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With the publication of this material we endeavour to present an approach to
the design of space-enclosures, showing a mental process which starts from the
basic idea of the indivisible unity “structure-space,” through its development
from a geometrical, structural, energy-dynamic standpoint, as well as from
studies on space organization to create an atmosphere for living.
We also endeavour to interest the designer in searching for other systems

than those known as “lineal structures”. For those other systems have been
used for several thousand years until timber and steel construction directed
the design of structures into the limited techniques of joining lineal members
with individual structural behavior.

In our attempt to create space enclosures, it is our task as architects to
increase our search for methods and techniques to develop three dimensional
structures based upon the theory of the membrane, originated in Germany at
the beginning of the present century. A mental attitude, the result of the
inertia produced by the lack of imagination and courage from designers, as
well as pressures from hidden economic interests, has been delaying those
developments for more than thirty years.
We present in the following pages a combined study of two double curved

ruled surfaces—the hyperbolic paraboloid and the hyperboloid of one sheet.
This material is a selection of the study prepared by the fifth year class during
two problems. They developed slowly but continuously as information was
gathered, collaboration was obtained, and finally built into reality.
The studies began with an introduction to geometry and double curved sur-

faces. An attempt was made to relate them to surfaces of double curvature
from Plateau’s experiment on surfaces of low superficial tension. Equations
for geometrical breakdown and formulas for design calculation were also
presented for practical porposes. We have also included some studies made on
the behavior of both surfaces to the action of uniform wind velocity through
wind tunnel tests, as well as different ways of organizing the prototype units
in space, under the action of light.

TWO WARPED
SURFACES

Eduardo F. Catalano

We acknowledge the contribu-
tions of the engineer, Atz'llo Gallo,
of Buenos Aires, Argentina; Pro-
fessors Duncan R. Stuart, Robert
M. Pinkerton, C. F. Strobel of
North Carolina, State College; and
the Students of the School of De-
sign who are the authors of this
article.
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ON GEOMETRY
Since the discovery of texts from the Hammurabi period that date from

2800 B.C. to the present time in which the concept of time is considered, geome-
try has developed into different comprehensive systems, each one complemen-
tary to the rest. They began with Oriental Constructive Geometry which was
needed to develop a utilitarian craftsmanship to the contemporary system
which expresses a cosmological pattern: a geometry of structures, as the:
result of active forces impinging on matter, and its reaction following the law
of minima and least resistance. \
The early geometrical doctrine developed by Euclid in 300 B.C. was the only

geometrical language until the seventeenth century when analytical geometry
was created, to be followed by the non—Euclidian geometries of Riemann and
Lobatschevsky.
Riemann and Lobatschevsky’s geometries are instruments for the interpreta-

tion of the universe. Both are used only for astronomical dimensions. It has
been proven that as long as those dimensions are not greater than several
million miles the Euclidian geometry is still valid.

Hyperbolic Paraboloids and Hyperboloids of one sheet, as ruled surfaces of
negative curvature, belong to the geometry of Lobatschevsky. For our purposes
their geometrical analysis falls within Euclidian geometry, analytical geometry,
and, in some cases, descriptive geometry which give enough accuracy for pre-
liminary studies. .. ,
ON SURFACES

Generally speaking, surfaces can be of different curvatures: null curvature,
positive curvature and negative curvature. Their respective geometries are:
Euclidian, Riemannian, and Hyperbolic or Lobatschevskian.
The curvature of a surface is determined by its intersections with two normal

planes which establish the positive or negative directions of the radius of
curvature.

In two dimensional curves the-curvature at one point is measured by the
inverse value of the radius of curvature %, which can be positive or negative
according to its direction (Figure 1).

In three dimensional curves the surface is positive or negative if the product
1 ' 1of — >< —— is positive or negative respectively.r r

This means that the surface is positive when the radii are situated on the
same side of the surface, and negative if they are situated on different sides
of the surface. (Figures 2 and 3).
ON RULED SURFACES
A ruled surface is formed by a single infinite system of straight lines.
When two consecutive straight line elements are intersect, the surface formed

is plane or single curved, and can be developed.
When the same elements do not intersect, the surface formed is warped and

cannot be developed.
Warped surfaces are double curved, but contain straight line elements.
True double curved surfaces have no straight line elements and are curved

in every direction: sphere, elipsoid, torus, etc.
The addition of the angles of any triangle on these surfaces is less than 180°.
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Figure 6

HYPERBOLIC PARABOLOIDS
A hyperbolic paraboloid is a surface generated by a straight line that slides

along two straight directrices not in the same plane, and remains parallel to a
plane director. (Figure 4).

Vertical planes that intersect a Hyperbolic Paraboloid surface determineparabolas.
Horizontal planes that intersect a Hyperbolic Paraboloid surface determine

hyperbolas. (Figure 5).
HYPERBOLOID OF ONE SHEET
A Hyperboloid of one sheet is a warped surface generated by a straight linethat revolves around an axis that it does not intersect, maintaining a fixed

relation to the axis (Figure 6).
It is also a surface generated by the rotation of a Hyperbola around one axisthat it does not intersect. '
It is a quadric surface. A quadric surface is such that any plane section

of it is conic. It is also called Conicoid.
Facets limited by two intersecting pairs of generatrices are not truly hyper-bolic paraboloids, since the generatrices from each set do not displace them-selves parallel to plane directors.
In Hyperbolic Paraboloids and Hyperboloids of one sheet, each point of thesurface is on more than one straight line.

MINIMUM SURFACES
To become acquainted with different methods of generating surfaces ofdouble curvature, we have carried on some studies on the geometry of similaror quasi-similar surfaces obtained by different causes or phenomena.
The surfaces selected were those generated by a close contour of straight

lines and curved lines acting as directrices, to which straight line generatricesand Plateau’s soap film methods were applied. We have explained previously
the geometrical properties of the surfaces of Hyperbolic Paraboloids and
Hyperboloids of one sheet generated by straight line generatrices. We will now
explain how the surfaces obtained by using Plateau’s methods are generated.

Plateau’s experiment consist of the study of surfaces obtained by dipping a
closed contour made of thin wire into a soap solution of low surface tension.When the wire is Withdrawn from the liquid, a surface of minimum area is
formed bounded by such a contour. The minimum surface obtained is due tothe action of surface tension created by the effect of forces of attractionexisting between the molecules of the liquid.

These molecules are attracted into the interior of the surface by those a little
more deeply situated till the process cannot continue and the surface becomes a
minimum one (Figure 7). “The molecules of the upper layer are only attracted
on one side and are therefore free to exert their energy toward the mass, and
their tendency is to bring this into the smallest compass, namely that of the
sphere”—Plateau. It is supposed that those surfaces have a stable equillibrium
as the gravity force is negligible due to their minimum potential energy1 from
surface tension and also due to their being minimum ones.

1 Potential energy: Energy which a body possesses by virtue of its position. eg. a coil spring,or a vehicle at the top of a hill possesses potential energy. Measured by the amount of work thebody performs in passing from that position to a standard position in which the potenital energyis considered to be zero.
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Figure 5

Figure 7

Figure 8

Joseph Henry, secretary of theSmithsonian Institute, in thepreface to Plateau’s articlesays: “It should, however, beobserved that the force in opera-tion in the phenomena of theheavenly bodies and that in theexperiments on soap film arevery different, and can only giverise to accidental similarities,and not to identical results.”Gravity, which is operative inthe first case, is the most feebleof all known attractions whileits sphere of action is indifinitely
great. On the other hand, mole—
cular attraction, which is opera-tive in the second case, is ex-
ceedingly energetic while its
sphere of action extends only tothe nearest contiguous particles,and becomes imperceptible at
sensible distances.”

Following that method twovsurfaces of negative curvature were obtained: adouble curved catenoid and a catenoid of revolution.2The double curved catenoid (Figure 8) represents a surface almost equal tothe hyperbolic paraboloid since catenaries and parabolas, which are respectivelythe curves obtained by the intersection of vertical planes with either surfaces,are very similar curves.
On the other hand no geometric relationship can be established between thecatenoid of revolution (Figure 9) and the hyperboloid of one sheet.Although sections from horizontal planes in both surfaces produce circles,sections from vertical planes containing the axis produce catenary curves in thecatenoid of revolution and hyperbolas in the hyperboloid of one sheet.
Soap film experiments have also been used to sustain astronomical hypothesessuch as the formation of Saturn’s ring and La Place’s hypothesis on thegenesis of the solar system.4
We present below a description of the several methods applied in studyingthe soap films formed by sets of straight line directrices and ring directrices,as an observation of the double curved surfaces developed by them.Figure 8 shows a saddle shaped membrane bounded by a wire frame. Verylittle geometrical difference is presented between the soap film (double curvedcatenoid) and ruled surface (Hyperbolic paraboloid).Figure 9 (top left) shows the surface generated by applying to the two ringdirectrices a soap solution. T'wo surfaces are formed, joined by a membranceparallel to the rings. Each double curved surface formed between the ringsand the membrane is a catenoid of revolution. By perforating the verticalmembrane and gradually detaching the rings, new catenoids are formed, asshown in the other photographs of Figure 9.Plateau has found that when the separation of the rings is greater than 2A;of their diameter, the surface loses its stability. The photograph at the bottomright of Figure 9 shows the instant when the catenoid explodes into twoconcave surfaces which gradually become flat, bounded by the rings. If, beforereaching their limit of stability, the rings approach each other, a planarvertical membrane is formed again, dividing the catenoid surface in two, asindicated above. .Another method is proposed by Plateau, in which the rims of two glass fun-nels are used. The equilibrium is formed when the angle between the film andthe conical surface of the large funnel is 90°. When the film is extended beyondthe limitary height of the catenoid,'the surface so originated does not presentthe least potential energy. (Bottom left Figure 9).Plateau states in the second part of the same article (annual report of theSmithsonian Institute—1872—page 353) : “All catenaries are, we know, alike;surfaces generated by catenaries of different dimension similarly placed inrelation to the axis of revolution will be cateniods, of similar figures. Thecomplete catenoid is not susceptible to variation of form but constitutes aunique figure, like the sphere and the cylinder. Hence the catenoids which,theoretically, (for simplicity the two rings or edges are considered withoutthickness), rest on the same rings, when the separation of these is below thelimit, do not differe from one another except by their dimensions absolutelyhomologous.”

2 Catenoid of revolution is a surface originated by the rotation of a catenary curve.33Catenary: curve formed by a chain or a string hanging from two fixed points. Its formulais very close to that of the parabola.4Annual report of the Smithsonian Institute—1864, page 207: “The Figures of Equilibrium ofa Liquid Mass” by J. Plateau.
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GEOMETRY FROM HYPERBOLIC PARABOLOIDS
Hyperbolic Paraboloids, as all the ruled surfaces of compound curvature, are

not developable. Figure 10 shows how we have approximated their developedsurface by triangulation. In this particular example, true lengths of members
and true angles were obtained by descriptive geometry. A more accurate wayto obtain the same result is by using analytical geometry methods. For this
purpose, a formula is given to position any point on the surface, related to ahorizontal plane of reference Z : 0. The other values—distances betweenpoints, angles formed by two meeting straight generatrices, etc.—can beeasily found by trigonometry.
HEIGHT FOR ANY ON THE SURFACE (Figure 11)Equation of a theoretical surface for a rectangular hyperbolic paraboloid:: A —- B X X X Y

— 0, height of plane of reference
height of central point (fleche)half of length of side X axis
half of length of side Y axisK1NI>NN IIH[II

Even though a Hyperbolic Paraboloid
is not a developable surface, there is a
way of obtaining it from a flat single
sheet of paper, as shown in Figure 12,
by twisting each strip of paper during
the folding operation.
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Figure 14

COMBINATION OF UNITS
A variety of geometrical patterns can be organized by grouping the units in

different ways which take advantage of their variables: lengths of generatrices
and directrices, true angles, and heights of vertices, as shown in the followingfigures, from 13 to 25. In some patterns there is a basic symmetrical unit, and
in others different units combined.

Most of these examples are simple combinations of units. The fluidity de-veloped by the warped surfaces with their up and down curvatures requires, in
almost all studies, a visual appreciation through the construction of models.As previously stated, light plays a fundamental role in the definition or read-ing of warped surfaces.
We leave to the reader the further study of the limitless combinations ofunits, especially those which because of their relationship present a series ofhorizontal generatrices and directrices which allow a simple subdivision ofthe total space, avoiding arbitrary intersections between the surfaces andvertical dividing planes.
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ORGANIZATION OF UNITS
In their organization, the units can have, from the Geometrical point ofView, any position in space. But structurally speaking, their positions are limit-ed by the type of stresses developed. As we will discuss later, the HyperbolicParaboloid shell stands only stresses of tension and compression when the Zaxis is vertical and with uniformly distributed loads. Tilted shells (Z axisinclined) will be subject to bending.
Combinations of several units present several structural advantages. Whilethe calculation of the membrane and the peripheral edges remain the same asin individual Hyperbolic Paraboloids, the common edges, although under twicethe compressive stresses of the individual one, sometimes present a bettersection to resist buckling because of the angle formed by the joining surfaceswhich creates a virtual depth.
In some cases forces acting at the low vertices of a unit are equilibrated byequal forces from the opposite unit.
Figure 13 shows a combination of rhomboidal hyperbolic Paraboloids. Eachset of three forms a hexagonal unit with the high vertices at its center.Figure 14 shows the same system organized in a freer order.Figure 15 shows a spiraling organization of units of different dimensions. Inthis figure, two positions of the low vertices (supports) are indicated: Blackpoints and circles show that the same plan can originate different spaces bychanging the position at the supports. ‘3‘Figure 16 shows three combinations of four units.

Figure 18
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Figure 23

Figure 17 shows a combination of two differ-
ent units. By positioning the supports at
different vertices, two different sequences of
spaces can be formed as shown in the drawing.
In the top figure, black points at the vertices of
the small units result in the space organization
as indicated in the second figure, and white
circles situated at the other set of vertices re-
sult in the space organization as indicated in
the third figure.

Figure 18 indicates a plan of eighteen units
with its elevation shown below. The same plan
can create different spaces by changing the
height of the vertices.

Figures 19 and 20 show three rhomboidal
hyperbolic paraboloids combined as a hexagonal . Figure 20unit. As the perfectly symmetrical structure
so obtained has three supports and its central
high vertex is rigidly connected to them by
three edge-beams, its structural stability is
very favorable against wind action.

Figure 21 shows four half-tilted hyperbolic
paraboloids. Although their Z axes are not
vertical, the fact that each horizontal parabolic
edge rests on the ground makes this combina—
tion a structurally efficient one.

Figure 22 shows a space defined by different
types of hyperbolic paraboloids.

Figure 23, 24, 25 show three other combina—
tions. The few examples shown here give a
clear idea of the endless variety of spaces that
can be created by the different grouping of
units, by the positioning of the supports, or the
height of the high vertices.

Figure 22
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STRUCTURE
In this chapter we present studies made by the French Engineer, Aimond5,on the behavior of the surface of rectangular Hyperbolic Paraboloids for

uniformly distributed loads.
Before the availability of these studies, a loading test was carried out at

the laboratories of North Carolina State College, which gave only an idea of
the direction of the internal stresses. We omit some of our findings, since
Pilarski presents in his book Voiles Mimics—1935, a very comprehensive ex-
planation of the internal stresses, and formulas for the calculation of hyper-
bolic paraboloids, based on Aimond’s studies.
A)—Extracts from Pilarski’s book: Voiles Minces
The hyperbolic paraboloid is a surface with equal structural behavior for
uniform distributed loads parallel to its Z axis.
On every point of the membrane the internal stresses are R : tension stress

R2 : compression stress
The values of R1 and R2 are constant in every point of the surface. "
On each point of the edge of a hyperbolic paraboloid the internal stresses

R1 of tension and R2 of compression are composed as tangential stresses which
are equilibrated by the reaction of the edge.
Every section parallel to AC is a parabola subject to simple compression.
Every section parallel to DB is a parabola subject to tension.

Formula for stresses at every point of the surface (per square foot). (Fig. 26).
t _ + wab w : Live and dead load per unit area
__4><2><F a:b:1=Lengthofedges

F : Height of middle point of surface.For rectangular hyperbolic paraboloid 9 : 90°
t :: R1 2 R2 :A4 X 2 x F

The total tangential stress on the edges to be equilibrated is E(t), WhereE : length in feet of edges a and b. g
In a hyperbolic paraboloid the thrust to the void on the straight edges is null.
The fatigue of the material of the membrane under the action of its ownweight is independent of the thickness of the membrane, but the live load(snow, wind) and the technique and material adopted.

MEMBRANE CALCULATION
On every point of the membrane the internal stresses have a constant valuefor load uniformly distributed:
We have seen that:

wab t tS : : 12" X X :4X2><F m><C 12”mC
S 2 Section of membrane per lineal foot

(12x inches).
t : Stress at every point C : Coefficient of safetym : Resistance of material 90 : Thickness of membrane

t:—

B)——1. The stress in a hyperbolic paraboloid are only tension and compression.Their values are the same at exery point of the surface.
5 Aimond, Office of Bases, Minister of Air, France.

Figure 26



2. No bending exists if the surface presents its z axis vertically.3. Stresses of tension and compression are resolved as tangential stressesalong the edges. -
4. The nature of the tangential stresses (compression or tension) depends

on the position of the supports. Compressed edges result from supports
at the low vertices. Tensile edges result from supports at the high vertices.5. Compressed edges behave as columns with axially increasing load fromhigh vertex (zero) to low vertex (maximum).

6. The membrane calculation is of minor importance—the system adopted
as support is more fundamental.

7. The greater the surface curvature, the lighter the structure becomes.
Remembering that:
t _ wab
_ 4 X 2 x F

8. Symmetrical hyperbolic paraboloids present better static conditions. This
concept applies to all structures. As Mach says, “The forms of equilibrium
are often symmetrical and regular. Every deformation in a symmetrical
system is complimented by an equal and opposite deformation that tends
to restore the equilibrium.”

Calculation: Example of a square hyperbolic paraboloid supported at the
low vertexes A and C. Figure 26.
E:a:b=100’—0”

t decreases when F increases.

F : 10’ — 0"
w : dead load and live load 40 p.s.f.

wab 40 X 100 X 100
t 2 : 2 5,000 p.f.

4 x 2 X f 4 X 2 X 10 (Tangential stress devel-
oped per lineal foot)

Et : 100 X 5000 p/f : 500,000 p (Compressive stress to
be absorbed by each
edge)

T : Et \/2_: 500,000 (1.4142) : 707,400 p
(Stress at A and C tan—gential to the membrane,
to be absorbed by the
foundation perpendicularFor foundations not perpendicular to T: to the direction of theTh : T cos 0: (tension) stress)

T.- : T sin 0: (compression)
EDGE CALCULATION

S : Area of edge section
I : Moment of inertia
Pc : Critical load
E : Modulus of elasticity
Et : Tangential load
C : Allowable stress of selected material
l2 : Length of edge
S :_E_t‘_ (Values of N vary according to shape ofC edge and distribution of loads. Values are
Pc : NEI obtained from table on page 139 of TheoryFigure 27 I,” of Elastic Stability, by S. Timoshenko.)



12

STRUCTURES AND RIGID. FORMS
A form has a structural quality when it’s matter is organized following

certain laws—law of minima, law of least resistance to the impinging forces
(gravity, dead and live loads, etc.). Many forms present enough rigidity to
stand the mentioned forces, but the organization of their matter does not
follow such laws. We differentiate them from structures by calling them rigid
forms. The following example illustrates this principle.

Figure 27 shows a modelof a hyperbolic paraboloid built with two faceted
sheets of metal. The rigidity is acquired by the organization of the facets and
the continuous staggered depth obtained by the overlapping of both sheets.The approach given to the solution is suitable for planar structures where
bending moments occur but not for surfaces of double curvature; The organiza-
tion of matter does not follow the nature and pattern of the stresses. Thus arigid form has been obtained but not a structure.
PRECAST CONCRETE SHELL AND METAL LATTICE WORK
The following three figures show‘ the result of studies made to constructwith different materials and techniques the same structure.
Figure 28 shows a model built with precast units each one with its own set

of dimensions, angles and pitches. Each precast unit has a lightening void which,
although not structurally necessary since the stresses are equal at every pointof the surface, has been designed as a study of the action of lightOn texturedSurfaces and as an attempt to disperse sound waves in a more different way.

Figure 29 ShOWS a loading test carried on a lattice work hyperbolic paraboloid
without stiffening edge. Figure 30 shows the same model after the edge hasbeen added, which gives considerable undeformability to the lattice work.
TESTING MODEL

Figure 31 presents the loading test of a balsa wood laminated model. It was
built with 9 laminations each 1/16" thick. The model presented such rigiditythat a uniform load of 100 times its own weight was unable to crack the coatof paint applied on both surfaces to determine positioning of the strain gagesused for the final test and readings.
AIRDYNAMIC TESTS
The irregularity of the surface created by a group of hyperbolic paraboloids,

with their up and down curvature, their high and low vertices and the varietyof surface behavior under different wind directions, made wind tunnel tests astudy of interest. Several types of tests have been carried out: wind tunnel
tests to determine the surface behavior to different wind directions and veloci—
ties for structural purposes; and wind tunnel tests for study of problems relatedto natural ventilation of the space enclosed.
Figure 29 Figure 30

Figure 28



Figure 3]

Figure 33

WIND TUNNEL TEST.—STRUCTURE “
Stresses due to the effects of wind are a major design consideration in any

large structural system. In structures of single or double curved surfaces, it is
possible for wind action to affect a complete reversal of stresses within the
form. Acting as air-foils, these surfaces tend to distribute wind loads in a
manner directly opposite to the distribution of static loads. In many cases,
structural elements which ordinarily would be designed for a light tensile load
due to dead and live load reactions, might also have to be considered as taking
a heavy compressive force under wind action. This is readily understood if we
investigate how air flow over the surface of an air-foil affects the stresses on
it. As air flows over the surface, a decrease in static pressure takes place,
becoming smaller as the velocity of the wind increases. This decrease in pres-
sure may be regarded as a lifting force or suction on the surface of the wing,
acting upward and normal to the surface. In the same wind velocity, a slightly
curved surface will exhibit more lift than a flat surface, since the air tends to
flow faster over the curved surface, usually approximately doubling its original
velocity by the time it reaches the high point of the curve; then decreasing to
the original velocity. For the sake of simplicity, and because it bears a closer
relationship to problems of structural design, only the top surface of the air-foil
has been considered. Generally speaking then, an increase in the air velocity
over a surface results in a decrease in static pressure, causing a lifting force.

In investigating the aerodynamic properties of the hyperbolic paraboloid,
several conditions of wind effect were studied. These effects were both negative
and positive (pull and push, respectively) pressure distribution and critical
points, total lift on the surface, over-turning moment tendency, center of pres-
sure location, and the study of air flow through and around the form. All
forces on the shape were considered by determining the force distribution on a
scale model of the hyperbolic paraboloid unit (see Figure 33) tested in a closed-
circuit, single-return wind tunnel. Forces and pressure coefficients on the model
were analyzed by the pressure distribution method using a multiple tube
manometer. Conditions on the model tested were most critical when the air
flow was directed at approximately 45° to the major axis of the model. This
position, high negative pressures were recorded on the top surface at the point
into the wind (See Figure 32). A positive pressure on the bottom surface at the
same point was also recorded tending to increase the total lifting force in this
area. When the major axis of the model was parallel to the air flow, a large
over-turning moment was exhibited, affected by a large concentration of
positive pressure on the portion of the bottom surface into the wind. A relative-
ly high negative pressure distribution on the top surface took place in the same
area, supplementing the positive forces. At 90° to the air flow, fairly uniform
negative pressure distribution was affected on both surfaces. .

Figure 33 shows the model tested for static pressure distribution in the wind
tunnel of the Aeronautics Department of North Carolina State College. It
was tested in three positions: parallel, perpendicular, and at 45° to the direction
of air flow, each position being tested at three speeds (approximately 50 mph,
75 mph, and 100 mph). Twelve tests were run in all, nine on the top surface
and three on the bottom surface. The bottom surface was tested in three posi-
tions, but only one air speed, since pressure distribution on the bottom surface
is relatively unimportant, assuming that the space covered by it will be
enclosed.

G From wind tunnel report by John Caldwell and Joseph Constanza.

13



14

WIND TUNNEL—VENTILATION.
A model of four hyperbolic paraboloids of extraordinary rigiditymade out of dowels and silk base paper was tested under threedifferent Wind directions.
The photographs in Figures 34 and 35 show the models inside thewind tunnel for wind directions along the two major axes.The action of the wind in each case was defined by the differentangles of turbulence produced by the tufts distributed regularly onthe surface.
Figure 36 shows the test in which the wind direction was parallelto the longitudinal axis. The steady tufts indicated by a single lineshow areas of negative pressure while the revolving ones define areaswhere the wind plays on the surface Without affecting it. (See grayareas)
The tests gave valuable information in finding an efficient location ofair exhaust for natural ventilation of the space enclosed by the fourunits.
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GEOMETRY OF HYPERBOLOIDS OF ONE SHEET
Collaboration with Prof. C. F. Strobel, Department of Mathematics, N. C.
State College

Consider that portion of the circular hyperboloid of one sheet between two
right sections located symmetrically on each side of the center of the hyper-
boloid. Let these sections be H units apart; circular sections have a radii of Runits. Also, consider f strings fixed at points on the circumference of these
sections so that they run parallel to the axis and are equally spaced around
the cylinder having the circular section as base. (Fig. 37).

360°
There will be one string at every around the circle. Call this angle 45:

f360°
¢ : —-——

f
Now if the bases are turned around the axis by an angle, qt), relative to eachother, the strings become “skew” rather than parallel and become one set of

elements of the hyperboloid. Assuming the strings to be inextensive, the circu-lar bases will draw together and be separated by the distance (b) :
b : 1/.)\/H2 — 4R2 sin2 9

2
THE PROBLEM: Give strings of a second set a twist equal to angle of twistof first set but in opposite direction and then determine formulas for the dis-
tances between the intersections along one string with those of the other set,
and to find the angles of intersection between members of the two sets.

Strings of the two sets must meet each other at points on the circular bases
Where they are fixed. Thus 9 must be an integral multiple of «p.

360°
f9:n¢:n

Note: 71 an integer.
Could use n : %
where p is integer.

1. Each element of one set meets those of the other set in
28f

2n : + 1 : number of intersections.
360°

2. There are facets arranged vertex from bottom base to top base so that
these vertices lie in a plane containing the axis of the hyperboloid and
there are n of these, or:

9 fn + 1 : + 1 : number of vertices
360°

To me distance formula we notice that K is the only variable. K : +I
gives distance from midpoint (K : 0) to the next higher intersection,
K : +4 gives distance from the 3rd point above midpoint to the 4th
point and so forth. (Fig. 38).
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¢ : Central angle subtended by points where strings are
360°

attached 42 : —— (Fig. 39).

a : Radius of circular section of k level which pases throughpoints of polygon. (Fig. 39).
R sin n q)
sinn¢ + sin (n + K) ¢ — sin K42 \/4[1 + cos(n+ K);

L1.- : Length of chords to right circular section of level K.(Fig. 39).
cos n 4"

L 2 R 2
k — cos ¢2

Angles on the under side adjacent to chord, made with elements of either16 set by chords on any right section are called fld and are all equal; those on theupper side are called 5.. and are all equal. (Fig. 40).
L1. Lkoc :25in‘1 Bazcos‘1

2 D16 2 D1.
0: L1.B:90°—— fluzcos‘12 2 D1. + 1 Figure 4l

ocK-1:180°—2Ba 3

WIND TUNNEL TEST OF HYPERBOLOID OF ONE SHEET
Aiming at similar results to those obtained through the wind tunnel test ofhyperbolic paraboloid, a Plexiglass model of a hyperboloid of one sheet wasmade as shown in Figure 41. The orifices on the surface for connection throughplastic tubes to the manometer, as Well as the tufts, were located along two ofthe generatrices of the surface. Readings were obtained over the completesurface by rotating the hyperboloid of one sheet 24 times.
Figure 42 ShOWS the fluttering of the tufts on the outer surface, whileFigure 43 shows them on the inner surface. In both drawings the generatriceshave been curved in order to present the undeveloped surface of the hyper-boloid of one sheet as a flat diagram. Steady tufts are indicated as shortstraight lines; black sections of a circle show various degrees of fluttering;white circles indicate a complete rotation of the tufts.
As in the case of the hyperbolic paraboloid tests, the steady tufts determine

areas of negative pressure, while the other tufts determine areas of different
degrees of wind action. The wind has no effect on the surface where the tuftsare shown as full rotated.

Figure 44 shows 17 horizontal sections of a hyperboloid of one sheet, each oneindicating the results of the readings from the action of the wind on thesurface.
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Felix Candela

STRUCTURAL DIGRESSIONS AROUND STYLE IN ARCHITECTURE

Felix Candela, Mexican Architect,
engineer and builder international-
ly known for his concrete thin shell
designs.

The professions of Architect and Engineer, once united under the title “Master Builder,”
have widened to such a dangerous extent that today few dare to tread the no man’s land be-
tween them. Yet, on those numbered occasions when someone has had the courage and tal-
ent to take his stand there—such as Maillart and Nervi from one field and Nowicki and at
times Wright from another—the results have been so extraordinary as to force us to con-
sider whether it is not there, finally, that lies the hidden solution to the fundamental
architectural problem of our age. This problem is, in my oppinion, the search for a style
or common language able to offer us something more than the aridness of mere routine.
A style is established when abstract forms begin to acquire a symbolic significance

derived from time and custom. It is evident that to the layman all architectural forms
appear abstract in content; but the architect himself must distinguish between those ab-
stract by effective definition, such as the moulding or decoration in general, and those
expressive of the structure which must be his essential preoccupation when he comes to
consider the material means of enclosing a given space. When he achieves their just
equilibrium, when the structural, or necessary, is in balance with the decorative or super-
ficial, he creates a true architecture.

Revolutions, after attaining their primary objective of overturning a previous “status
quo,” must establish a basic code backed by one political and philosophic programme.

' In the case of Architecture, such a code is called style. The architectural revolution of
the twentieth century has executed a near total destruction of the former practices whose
ineptness demanded the outbreak; but we have yet to witness the constructive phase. Per-
haps this phase has been retarded by the absolute freedom we have enjoyed in the at-
tempt to evolve a new style, and perhaps by the continuation, albeit in a different man-
ner, of the long established habits we condemn. Freedom itself can seldom produce
positive results, since the middle-man may adjust himself only within fixed limits which,
while curtailing his liberty of movements, give him the confidence and security essential
for his competent function. The genius alone is capable of living happily in such a rare-



fied atmosphere, and to him alone is given the power to create, under such conditions,
works that automatically constitute law; works, that is to say, that will form the grammar
and vocabulary of a new style. The inherent danger is that he may dedicate himself to
expressions which, although bearing the indisputable stamp of his talent and vitality,
may not be based on authentic architectural values. Thus a senseless formalism may be
created that will later require a disproportionate effort to abolish. This process has been
continued casually for several decades, seemingly unnoticed.

It might be convenient here to compare very briefly what occurred in the formation
of the historical orders. For the major part they comprised little but modification and
adaptation of preceding styles, but two, the Gothic and the Greek, may be considered
as original and scrutinized for the purpose. It is ironic that Gothic Architecture, con-
sidered through centuries an incult and barbaric art, should constitute the main mani-
festation of lucidity in the history of Western building. Here we find a true architec-
ture characterized by the subtle blending between the building and its sculpture, between
the pure structure and those decorating or adorning elements used as a further accent of
the structural solution. However, the various attempts to~nrevive Gothic in the last hun—
dred years have always halted at the superficial and external aspect of the problem,
without trying to penetrate the profound significance of its philosophy, its intimate
combination of structure and expression.

In contrast Greek Architecture, or classical composition “par excellence,” is as little
in the category of architecture as it is sculpture. The Greek enjoyed a gentle climate
and his life, social and commercial, was enacted in the open street. As a result his ap—
proach to architecture was one of outdoors, where his buildings were most prone to
appraisal. He had little interest in interior space, hence less in the constructional methods
used to create it. His buildings were not formed in the embodiment of a structural logic,
but in the reflection of ritual customs and symolism, executed in the most permanent
material he could find. The fact that the post and lintel, copied from the traditional
forms of primitive wood structures, is one of the most absurd ways to employ stone was
apparently of no concern to him. It is a paradox that the Greeks, so advanced in all other
facets of culture and science, should have been, in this respect, so blind. Greek temples,
stylised reproductions of early wooden temples, with their monstrous pillars supporting
nothing, may be admired for their impeccable carving and elegant proportions; but they
are rationally explicable only as pure sculpture. Several centuries of a hesitant process
of adaptation had to pass before the arch, the most logical system of construction in stone,
was again generally accepted.

In recent times the same process of adaptation was applied when steel appeared on
the scene, although it was less evident since the basic structural element of steel is the
elongated prismatic member, in which the length predominates over the other two di-
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mensions. This is similar to the wooden structural member, and therefore there was little
reason why both materials should not be used in similar manner.

Reinforced concrete is a much newer technique. Its extensive use began only in the late
nineteenth century, coinciding with the climax of steel construction whose possibilities
were by then fully developed. The initial progress of its adaption has seen its employ—
ment in forms directly copied from the structures of steel and wood, even to the imitation
of their systems of analysis.
Now a circumstance did exist to justify the Greek in his treatment of stone, in the

symbolic importance that the reticulated wood frame had acquired in the eyes of his
people. A similar justification cannot be extended to excuse the foolishness of the cur-
rent approach to reinforced concrete design. The skeleton frame in reinforced concrete
is a structural manifestation almost as inconsistent as the stOne lintel, being in addition
a dull and routine copy of the structural forms of wood and steel. Concrete is not made
to work in beams of massive rectangular section. Its highly disfavorable ratio of resistance
to weight quickly limits the span this kind of structure may achieve, as most of the beam
is acting only as a dead weight with no structural or resistant function. By mistaking the
mere possibilities of the material for its real properties, the foundations of the formalism
predominating contemporary composition have been laid, on the basis of the purely
literary pretensions of functionalism of earlier times.

It is noteworthy that the aphorism “form follows function” should have attained such
an awesome public stature. In reality, of course, the end behaviour or function of a
material will depend entirely on the form given to it. If modern architecture is but the
varied play of barren rectilinear systems, it is perhaps because the closest practical inter-
pretation of Sullivan’s dictum is resolved through form following “the fashion.” It would
be a tragedy if the production of cubic masses, arranged into rectangular planes of glass
and accentuated by murals and plants, should win a recognition synonymous with archi-
tecture in the minds of the new generation; or if the monotony achieved by endless repe-
tition should be regarded as a valid expression of unity and style.

It is now time at last 'to begin the constructive phase of our architectural revolution.
The “International Style,” as epitomised in the recent erection of cubist abstractions,
has nothing further developable to offer us. The classical and destructive phase should
be considered complete.

For lack of a strong spiritual motivation—whose default is also responsible for the con-
fusion prevalent in so many other aspects of modern society—on which to base the new
style, it would seem logical to confine our reasoning to more materialistic considerations.
These correspond, by very definition, to the structural element in architecture.



At present, architects do not seem attracted to the problems of structure. Excusing
themselves on the grounds of their preoccupation with the superficial design and arrange-
ment of modern mannerisms, they expect conveniently that some one will oblige to solve
the problem for them. But engineers (the indicated party) have a like disinterest in the
problem. Their chief concern is to justify the boring and insignificant forms presented
to them by means of a mechanical process that has nothing to do with design; that is, to
calculate these forms.

Calculation is a mathematical process in whose application it is necessary to simplify
—abritrarily in most cases—the properties of constructional materials. .It constitutes one
of many means—and not the most trustworthy—of ascertaining in rough approximation
that the form and dimensions adopted for the structure will be generally acceptable to the
common criterion, and consequently that, so calculated, the structure will present a cer-
tain probability of stability and permanence. Any pretense of obtaining “exact” estimations
is an absolute illusion. On the contrary, such estimations can ostensibly justify the
greatest structural blunders; but they are incapable of giving us the proportions of a
structure, since. both its form and dimensions must have been previously determined at
its conception by design. Design, and structural design of course, is an intellectural pro-
cess of synthetic nature, in which is to be found imagination, intuition and experience,
and which demands a certain freedom in the creative agent. It adheres, in short, to the
same laws as those of artistic creation. Thus it presents to some minds the inconvenience
that such laws cannot be included in any chapter of the Building Regulations.

Major sciences are fully aware of the need for this synthetic process, which is the basis
of all development. Unfortunately, it would appear that the minor sciences, and principally
the science of structure, are still lost in a jungle of analysis, whence they will escape only
through periodical revisions of their basic hypotheses. We are now working under the
same assumptions developed more than 100 years ago by several synthetically-minded
French thinkers. The fruitfulness of such hypotheses in their time does not guarantee their
everlasting immutability. Yet, every paper for an engineering Society must be restrained
today to a dry exposition of what are considered facts; as if the Secretary of any technical
association were in formal possession of eternal truth. Personal opinions are absolutely
forbidden.

Moreover, it is curious to note that the least scientific part of engineering is that to
which calculations refer; for although mathematics intervene in them, and often advanced
mathematics at that, the process is essentially reduced to the mere application of a Code.
Hypotheses of doubtful value are indiscriminately accepted, since without these the in-
terpretation in mathematical terms of the building materials would be quite impossible.
But the essence of scientific investigation is the constant doubt, the diffidence of the
results achieved, and the eternal pursuit of the unattainable reality. It follows that only
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the experimental, or empiric, part of Engineering has the right to consider itself Scien-
tific. .
The architect of today seems willing to experiment with any of the elements that

combine to make a building—except that which should be his first and most vital con-
cern. Towards the structure he maintains the same classical outlook that characterized
the Greeks. When he forges this missing link in the chain of philosophy governing his
present designs, and not until then, he may justify the hard struggle for an authentic
Architecture fought in the earlier part of this century, and he will acquire the tools to
fulfil the promise that the opportunities of our age demand from him.

Meanwhile we continue to endure the innocuous constructions in whose indulgence,
as an architect, he may be endangering the future of his very existence. For such is the
aspect of contemporary buildings that to the common eye they might as well have been
produced through a machine, in which some fault of mechanism results in the production
of near identical solutions for highly diversified problems.

It is easy to discern in current architecture a preference to treat the structure as the
predominent feature of the composition. The supporting framework is bared, and breaks
through the surface of the facade. It is forgotten that the mere disclosure of the structure
is not a guarantee of its intrinsic beauty. Nevertheless, this tendency may prove to be
the mark of the new period of integration in architecture, that is when the structure once
comes to receive the just and sensitive treatment it deserves.

In every historical period, architectural composition has taken its stand with stronger
insistence on one or another of the three fundamental values—function, structure and form
—whose happy integration produces a true work of architecture. It appears time to end
a period in which function has held the reins of importance; its limited capacity for
creating forms will soon be exausted, and it has led unfailingly to aridness of expression.
We remain with structure as the only logical element able to impart a general sense to
architecture; able to grammatize a language easily understood by all, able to produce,
finally, expressive forms characteristic of a style whose emotional content would de-
pend on the only stimulus able to generate sensitive reaction in these times of crisis:
human reason.
The situation offers to architects a real challenge to enter a field which may have looked

before far to complex to be explored. Perhaps this complexity is only apparent. The
imminent initiation of another revolution in the so—called science of structure would indicate
the propriety of an architect’s tread—on the sacred ground. I would say that the immediate
task of the building profession is to close this wide gap'between architecture and engineer-
ing. In such an endeavour, the architect might retrieve his lost title of “Master Builder.”



ON THE ORDERLY SUBDIVISION OF SPHERES

For one reason or another men have preoccupied themselves for a considerable
period of history with questions concerning the geometrical properties of spheres
_ or perhaps, more generally, with problems of compound curvature. This pre-
occupation has gained much subtlety as knowledge of the external world has
deepened. The sphere seems to have occupied a unique and at times mysterious
position in the processes of geometry, bound as it is to the incommensurable “pi”
and to the fact that it does not easily lend itself to that kind of a geometrical
extension known as a coordinate system. In these and other ways it has pre-
sented an obstinately intractable position in the geometrical heirarchy.

Nevertheless, as experience has increased, men have become aware of the
spherical nature of their world - and aware that knowledge of the properties of
sphericalness can afford great advantages. In one direction it has been found use-
ful to project ideas concerning the sphericalness of earth into various forms
of maps, as aids to coordinate exploration and mastery of environment. In
another direction, history shows us abundant evidence of men’s use of spherical—
ness as a structural order. The history of this form as an object of beauty
and utility is an exceedingly rich one. We encounter it in seemingly endless
variation in nature - and the history of technological man shows it in lengthy
and diversified employment.
Under these circumstances it would seem that men’s scrutiny of nature would

have lead them to a greater variety of methods for modulating spherical con-
figurations than is actually the case. For though the analytical tools for deal-
ing with this problem have been available for a considerable time, imaginative
inertia seems to have kept us from going farther than we have. Our preoccu-
pation with the translation of methods for dealing with flat surfaces onto
those of spheres has tended to obscure our vision. Because of this geometrical
bias we have been inordinately attracted to the latitude-longitude system as a
means for ordering sphere - but, admirable as this system may be, for certain
kinds of problems it leads to well-nigh hopeless complexities.
Our purpose then will be to show some of the basic properties of spherical

order and to indicate some ways that these properties may be used. By doing
this we hope to present the designer with a broader spectrum of choices -
choices which will enable him to more fully optimize certain geometrical prop-
erties, i.e., minimization of number of kinds of faces, vertexes and edges, mini-
mization of difference in area of face, length of edge or difference in angular
conditions, maximal standardization of conditions of joining, etc.
Though this short paper cannot pretend to completeness in these matters,

it is hOped that it will indicate the broad outlines of a methodology in sufficiently
clear fashion that readers with normal first year training in college mathematics
can procede on an independent course of investigation.
The majority of the material is presented in the form of drawings with

accompanying explanatory notes. The sequence of presentation is such that we
begin with those forms of spherical subdivision which are related to the more
familiar latitude-longitude or bi-polar system. From these, we progress to
the multi-polar systems of spherical symmetry. Finally, we include a description
of the mathematical techniques necessary for calculating dimensional proper-
ties of the various figures.

Duncan R. Stuart

Duncan R. Stuart, Associ-
ate Profesor of Design at
the School of Design, North
Carolina State College is
illustrator of his own arti-
cle.
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A great circle plane is defined by the intersection with the surface of a sphere
of a flat plane passing through the center of the sphere. In figure 1, the fami—
liar Bi-polar system of spherical subdivision is shown ‘in which a series of
great circle planes are arranged about a common axis. These planes are in turn
penetrated by a series of planes passing through the sphere at right angles
to the common axis of the great circle planes. Each of the new planes with
the exception of the equatorial one describe circles of smaller diameter than
the sphere and are known as lesser circle planes.This type of subdivision naturally gives rise to four sided faces. However,
each longitudinal rank of faces must terminate at the poles with one face of
three sides. Note as well, that in this system there are always as many faces
joining at a pole as there are great circle subdivisions at the equator.
The other portion of this figure describes how we may procede to other types

of subdivision based upon this system. The two types of symmetry shown are
developed in one case by maintaining the great circle continuities while alter-
nately interrupting those of the lesser circles.‘In the other case, the lesser
circle continuities are sustained while those of the great circles are alternately
interrupted. It is seen that hexagonal and triangular patterns arise quite
naturally from this system. Moreover, from the point of view of economy of
joining, the hexagonal systems are superior to those of the four sided faces.
For the hexagons, though equal in'area to the four sided faces, have a shorter
perimeter and thus represent a considerable saving in total length of joining
edge. Note also that in the latter two systems the number of cells joining at
any point other than the poles is never greater than three.

Figure 2 shows other developments of the Bi-polar system. In these cases
the patterns have been altered to permit the cells to maintain approximately
the same relative proportions as they move from equator to poles. This method
of subdivision cannot be rigourously carried out since an infinite number of
cells would be required before the pole could be reached. It is of some interest
that as the equatorial cells are reduced in size, the difference in size between
the largest and the adjacent smaller cells is less.
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Figure 3 more fully describes the triangular patterns suggested in Figure 1.
The illustrations show the resultant patterns when great circle and lesser
circle continuities are held. In each case, the continuities established by the
sides of the triangles not lying on the continuities of great or lesser circles are
analogous to the “rhumb lines” of the mercator map projection. With this type
of subdivision, the number of kinds of facial types is twice the number of divi-
sions between the equator and a pole.
Figure 4; Before turning to a more general approach to multi-polar systems,

we have included this seemingly simple system of a 6 pole lesser circle method
of subdivision. Although conceptually this is the essence of simplicity, or at
least it seems so, it leads to an highly complicated series of facets. It appears
to be more of an item of curiosity than of utility. Moreover, because its genera-
tion is based upon lesser circles its mathematical generation is not amenable
to easy calculation by trigonometric techniques — since spherical trigonometry
deals with great circle patterns.

Beginning with Figure 5, we turn to a more general approach to spherical
subdivision. The previous figures have given us a notion of the properties of
spheres subdivided in terms of a single axis of symmetry. This method seems
admirably adapted to coordinating points on the surface _ for we can define a
point anywhere on the surface by a pair of numbers - one of which defines its
lattitude or distance from a pole.v.and the other number, its longitude, which
defines its angle of rotation with respect to pre-assigned line of longitude.
The unit modulus of this system is defined by a spherical isosceles triangle
the base of which is the equatorial planar edge, the two equal sides being the
longitudinal great circle planes joining the equator with the poles. We see that
if we wish to divide our sphere into units smaller than this we must either in-
crease the number of great circle planes - thus increasing the polar conges—
tion — or we must divide up the unit modulus in any one of a number of possi-
ble ways. Nevertheless, however we carry'out this latter type of division, we
cannot escape the fact that we must create a relatively large number of differ-
ently shaped parts. It therefore seems intuitively evident that to surmount these
difficulties we must do two things; first, we must seek means of reducing the
size of the unit modulus in terms of the central angles it subtends. And second,
we must find a way to symmetrically distribute our “congestion” to a greater
number of points than the two poles of the. latitude—longitude system.
To take up the second of the above consideration first, we must look into

the ways we may evenly distribute points over the surface of a sphere. If these
points are so distributed, we may connect them with portions of great circles
and thus divide the surface into identical units. Moreover, if we are in the
business of distributing points evenly over a spherical surface - and we intend
to connect these points with geodesic lines _ are we not then simply constructing
spherical versions of planar bound polyhedra? It turns out, of course, that we
are. Furthermore, the polyhedra which lend themselves most gracefully to
our purpose seem always to possess an even number of vertexes or poles.
Though we may construct symmetrical figures with odd numbers of vertexes,
they must always arrange themselves about a single axis of symmetry — and
they are therefore always related to the latitude-longitude system from which
we wish to escape.

Thus, since we wish to escape two poles, we must go to four poles for our first
polyhedral subdivision. Figure 5 shows us the way we may distribute points in
terms of polyhedra possessing the properties of being made up of faces constructed
of unit lengthed edges, uniform facial angles between edges of face, etc. They
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are the so-called “Platonic” solids. We have included the Rhombic versions of
these figures as ‘well. The figures are, starting at the upper left, the four poledor vertexed, four faced tetrahedron. Below this is the six vertexed, eight-faced
octahedron. Next is the eight vertexed, six faced cube—which also may be con-sidered to be the rhombic development of the tetrahedron—since each of its six
faces can be placed symmetrically tangent to the six edges of an inscribed
tetrahedron. This is followed at the upper right by the Rhombic dodecahedron, a
development of the octahedron and cube. This figure manages to symmetrically
distribute the six vertexes of the octahedron and the eight vertexes of the cube,fourteen points in all. Just below this we find the twelve vertexed, twenty faced
icosahedron. the twenty vertexed, twelve faced pentic-dodecahedron and theRhombic version of these last two items—the Rhombic triacontahedron. This



latter figure symmetrically distributes 32 points over one spherical surface. These
points are the vertexes of icosahedron and pentic-dodecahedron. To the left of
the Rhombic-triacontahedron we have shown the figure obtained when we draw in
the axis of the diamond shaped faces of the triacontahedron. This figure estab-lishes fifteen interlocked great circle planes with sixty-two points or vertexes—
moreover, it divides the surface of the sphere into 120 similar triangles which
would be identical were it not for the fact that 60 are “right handed” and 60are “left handed”. This seems to be the highest order of unit symmetry we may
develop on a spherical surface. If we wish to subdivide farther, we must employmore than one kind of face.
Figure 6 describes the symmetrical divisions obtained when we permit morethan one kind of face on our polyhedron—though we still hold to the restriction
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of a unit length of edge and uniformity of angular condition within a given face
in most of the cases shown. Most of these configurations are what we call “archi-
median” solids. Beginning at the upper left, we have a vertexially truncated
tetrahedron which symmetrically distributes twelve vertexes. Below this, a
similarly truncated octahedron which distributes 24 vertexes. Below these we find
two versions of similarly truncated cubes. The first of these has been named the
“dymaxion” by Mr. Richard Buckminister Fuller and it occupies a prominent
position in his geometrical investigations. This prominence stems in part from
the fact that the points on its surface represent the points of tangency of equal
sized adjacent spheres when they are packed together so as to fill a minimum
amount of space. This figure distributes twelve vertexes symmetrically over the
spherical surface. The second of these, made up of eight triangular and six
octagonal faces establishes 24 points on the sphere.
On the upper right, we see the vertexially truncated icosahedron, (or truncated

pentic-dodecahedron) which establishes 30 points on the spherical surface. Below
this is a figure made from the twelve pentagons of the dodecahedron plus 20
hexagons which symmetrically distributes 42 vertexes. Below this we see several
extensions of the icosahedral-dodecahedral symmetry into higher numbers of
symmetrically distributed points. One of these figures seems to be of particular
interest and is presently being investigated by the author. This is the figure
located approximately in the middle of the cluster at the lower right of the
figure. It is composed of twelve 'pentagons and 80 equilateral triangles, and is
the only one of all the figures shown which possess the “right” and “left”
property of “spiralness”. There is a figure similar in principal to this one composed
from 6 squares and 32 equilateral triangles which has not been shown in this
article.

Figures 7 through 12 show various methods by which we may further subdivide
the “Platonic” solids and their Rhombic extensions. The first of this group, Figure
7, shows one method for developing smaller triangular subdivisions on a spherical
tetrahedron. This subdivision is accomplished by radially extending straight line
patterns on the surface of the “flat” tetrahedron to the surface of the surrounding
sphere. Since great circles lie in flat planes, any extension of a straight line on
one of the flat faces of the tetrahedron automatically will lie on a great circle



continuity on the surface of the sphere—provided that the straight lines’ extension
to the spherical surface is radial. It can easily be seen that as the subdivision of
the tetrahedronal face increases, the number of different kinds of faces on the
spherical surface increase as well. It can also be seen that the size differential
between these various facets is a function of their distance from the polyhedral
surface. Thus, the smallest facets are to be found in the vicinity of the vertexes
of the tetrahedron while the larger facets are found over the centers of the face.
In contrast to the bi-polar system, there is no tendency for an inordinate number
of faces and edges to come together at a single point.
Figure 7 also includes some examples of the derivation of other types of cellular

' ‘ division based upon the triangulated grid. The examples show only hexagonal
V/é§§§§A patterns but it can easily be seen that four-sided patterns could have been de-.I Ima“ rlved as eas11y by suppressing one set of great circles of the triangulated pattern.

a Figure 8 shows another way of triangulating the spherical surface starting
from a tetrahedronal pattern. The basic modulus of this pattern is an equilateral
diamond shaped facet which is developed by passing great circle arcs from the
tetrahedron vertexes to the centers of the tetrahedron faces. In the case of the
tetrahedron, these resultant diamond facets are actually the edges of a spherical
cube. (see figure 5). The great circle arc of the tetrahedron edge, which passes
along the diagonal axis of the diamond face, is next subdivided into any even
number of divisions desired. Great circle arcs at right angles to the tetrahedron
edge are then passed through the «points established by the equal subdivisions
of the tetrahedron edge and are extended until they touch the edges of the
diamond. Two sets of great circle arcs are then passed through these arcs to
complete the triangulation in the manner shown in the drawing. It can be seen
that the number of kinds of triangles thus developed are equal to the number
of divisions originally made along the tetrahedron edge divided by two. The
total number of triangles per sphere (N) : 2d2D, where d is equal to the number
of kinds of triangles and D is equal to the total number of diamonds on the
spherical surface. In contrast to the patterns found in figure 7, notice now that
the larger faces are found at the vertexes and over the edges of the tetrahedron
face, while the smaller faces are to be found over the centers of the tetrahedron
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faces. The reason for this occurance is that in this type of grid we are subdividing
on the basis of a spherical modulation rather than by establishing our primary
modulation on one of the flat faces of the circumscribed polyhedron. It is further
pointed out that there is a considerably smaller difference between the largest
and smallest faces in this type of subdivision than in the type shoWn in figure 7.
As a consequence of this, edge length differences are smaller, numbers of different
edges are less and angular conditions between the faces are greatly reduced in
number. As in figure 7, figure 8 includes the development of other type cellular
division based upon the triangulated grid.

Figures 9 and 10 show the application of the technique of subdivision developed
in Figure 8 to that group of poylhedra related to the octahedron. We see that
this grid encompasses the geometrical properties of the octahedron, cube and
Rhombic-dodecahedron. Figure 9a shows the triangulated spherical grid and its
development with respect to the even subdivision of the octahedron edge. Figure
9b shows the grid and its relationship to the flat faced octahedron. Figure 9c
relates the same grid to the cube, and 9d to the Rhombic—dodecahedron.

Figure 10a indicates cellular patterns developed by triangulating the face of an
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octahedron in a manner analogous to that shown in Figure 7. While 10b shows asimilar cellular pattern, but in this case the pattern is based upon the gridding
system developed in Figure 9. The remarks made concerning the differences be-tween the grids shown in Figure 7 and 8 apply equally here. Attention is calledto one further point, however. Careful inspection of Figures 10a and 10b willshow that the sphere with the greatest number of cells in each of these figures
are composed from the same number of different kinds of cells (9 in each case);however, the total number of subdivisions is much greater in figure 10b than inthe one in 10a. (196 subdivisions in 10a, 580 in 10b.)
Figure 11 deals with subdivisions based upon an icosahedron which hasbeen subdivided in a manner similar to that seen in Figures 9 and 10. Figures11a through 11d shows successively the triangulation patterns as they relateto the even modulation of the edge of the spherical icosahedron, the polyhedralicosahedron, the pentic-dodecahedron and finally the rhombic-triacontahedron.In each case, the 15 great circle spherical pattern has been included in which thelinear emphasis has been placed upon that portion of the grid which relates tothe accompanying polyhedral form.
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Figure He shows the extraction from the triangular grid of the resultant

hexagonal patterns as the edge of icosahedron is increasingly subdivided. It
is interesting to compare the sphere with the greatest number of cells here
shown with one related to the octahedron (see Figure 10b.). The octahedronal
figure has nine different kinds of cells on its surface and the total surace is
divided into 580 divisions by them. In the case of the icosahedral figure now under
examination, it can be seen that this figure is divided by only six different kinds of
cells and the total number of cells on the spherical surface is now 650. Moreover,
the difference in size of cell on the icosahedral figure is considerably smaller than
on the octahedral one and the resultant edge length and angular differences are
correspondingly smaller.

It seems highly probable that so long as we establish the criteria of minimiza-
tion of facial size differential, edge length differential and angular differential,
the icosahedral family will have to serve as the polyhedral basis for the sub-
division. For if we try to go beyond this point, we are faced with the necessity
of employing some one of the figures shown in figure 6, the so—called “Archi—
medean” solids—and when we do so we are faced with bi-facial symmetry and a
resultant complication in our number of moduli. There are certain special
cases where advantages accrue to systems based upon these forms but, in general,
“icosahedronness” seems to be the apogee of this series.

Since the magazine publishing this piece is not large, we are forced to abandon
any notion of going into greater detail in our discussion. However, Figures 12 and
13 have been included to enable those who are interested in further study to
carry out with a greater degree of precision some analysis of the possibilities
presented. Figure 12 is simply an exposition of spherical trigonometry presented
in a way that the author considers effective for the accomplishment of this task.
The diagrams and equations seem to be self explanatory. Figure 13 shows an
example of a grid worked out in the manner of Figure 9. The numerical indications
at the vertexial corners indicate the spherical surface angles while the angular
data along the edges of the faces indicate the central angles subtended by the
edges.



The Right Spherical Triangel
(C : rt. angle)

The Cases
I. Given A, B, C, determine a, b, c.

cos A
cos a :

sin B
cos B

cos b :
sin A

cos c = cos a cos b

II. Given A, C, c, determine a, B, b.
Determine a by Law of Sines
sin b : tan a cot A
cos B : tan b cot 0

III. Given A, C, b, determine a, c, B.
cos B : sin A cos b

cos A
cos a :

sin B
cos c : cos a cos b

1V. Given C, c, a, determine A, B, b.
Determine A by Law of Sines

cos A
sin B : ——~—

cos a
cos B

cos b :
sin A

V. Given a, b, C, determine A, B, 0.
Determine A and B by Law of
Sines and

cos c : cos a cos b

The General Spherical Triangle:
Sine Law:

sin A sin B sin C
sin a sin b sin c

The Cosine Law for Sides:
cosa :
cos b cos c + sin b sin 0 cos A

(1051) :
cos a cos c + sin a sin 0 cos B

cos c :
cos a cos b + sin a sin b cos C

The Cosine Law for Engles:
cosA :
cos B cos C + sin B sin C cos a
cosB :
cos A cos C + sin A sin C cos b
cosC :
cos A cos B + sin a sin B cos c

The Cases.
I. Given 2 sides and the included

angle:
Find other side by Law of

Cosine for sides.
Find other two angles by Law

of Sines:
01‘ use

sin 1/2 (a—b) tan 1/2 (A——B)
sin 1/2 (a+b)— cot 1/; C

cos 1/2 (a—b) tan 1%; (A+B)
cos 1/; (a+b)— cot 1/2 C
Note: by adding and substract-

ing we obtain-B and C.
Get other side by Cos Law for
angles.

II. Given 2 angles and included
side:

Given A, B, c, to determine a,
b, C.

Determine C from Cos Law for
angles.

Determine a & b from Sine
Law.

III. Given 2 angles and side op-
posite one angle:

Given A, B, b, determine a, c, C.
Determine C by second method
shown in Case I.

Determine c by Law of Sines.

Note: Although there are two
other possible cases, (i.e.
Given A, B, C, a, b, 0,) they
do not apply in these cases
for at least one surface
angle or one central angle
is always given at the out-
set, or, the problem is more
readily analyzable as a
right spherical triangular
case.
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Felix J. Samuely

SKIN STRUCTURES
THEIR RECENT APPLICATION IN GREAT BRITAIN

Felix ]. Samuely well known Eng—
lish structural engineer currently
teaching at the Architectural Asso-
ciation, London.

During recent years, shell construction has been used more and more for roofs, and
has become increasingly familiar. The familiar shell, however, is either the standard
cylindrical or spherical shape, and it is sometimes forgotten that roofs of this type need
not necessarily be curved, but can be made up out of straight lines. Once this point
is appreciated, the field immediately widens, and many different roof outlines become
possible. Such roofs are known by several different names, for instance, folded slabs, hipped
plate roofs, etc., but they can all be grouped as skin structures.

Generally speaking, a skin structure could be defined as a structure in which the stiffness
of the skin is used as the basis of the construction. The stiffness of a slab in its own plane
is considerable, and cannot be better demonstrated than by the Classic example of laying
a thin piece of cardboard between two supports. This cardboard is quite incapable of
withstanding loads, but once the cardboard is turned up on its side, it can carry a load
applied to its edge. Two pieces of cardboard, inclined and resting against one another
at the top, are capable of carrying quite a considerable load. See Figure 1.
The unsupported ridge in the center can carry a vertical load by resolving it into two

loads, one in the direction of each piece of cardboard. The surface of the cardboard
has become, in effect, a skin structure. The ends of the cardboard should be held to-
gether against each other to prevent sideways movement.

This principle is still valid if the cardboard is replaced by solid concrete or by
latticed steelwork.

It can be seen from this that the placing of structural member makes a tremendous
difference to its carrying capacity, and the art of skin structures is to recognize the posi-
tion in which a member has its greatest strength, and then to arrange it accordingly.
As members are strongest in the plane of their skin, forces occurring at right angles to
them must be resolved into components in the direction of the skin.
The stiffness of a roof construction has always been taken into account for distribu-

ting wind forces. A solid roof is used to distribute these forces to cross walls or wind



frames, and if the roof is not solid, that is, consists of sheet material that is not strong
enough to withstand forces even in its own plane, bracing is introduced to bring the
wind forces to the walls or frames, and this bracing is always introduced in the plane of the
roof.

This is common practice because it is quite easy to visualise wind forces acting in the
plane of the roof. What is done for wind, however, can quite easily be applied when
transmitting the thrust of intermediate frames or arches to cross walls or cross frames.
An example of this is shown in Figure 2, which gives the cross section of a church at

Poplar, in East London. The thrust at the bottom of the rigid frames would not be taken
separately for every frame, and the slab is used for bracing. In this particular case the
frames started only at first floor level, so that it is the slab at first floor that is used to
transmit the horizontal forces to the end.
A four—hinged frame can also be stabilized by the stiffness of a horizontal slab in its

own plane. This horizontal slab, in its turn, can carry the loads to cross frames, cross
walls or gable walls. Four-hinged frames have the advantage that the hinges can usually
be positioned at the most economical points, and this permits of easy erection for precast
concrete or steelwork. It must not be forgot 'en, however, that the frame on its own is
unstable, and only becomes stable after the s iffening slab is in place. With steelwork, for
instance, the frame must either be guyed temporarily, or braced in the plane of the slab.
In spite of its advantages, the four-hinged frame is very rarely used in practice. Engi-
neers and architects, not to mention local authorities, are always reluctant to use a sys-

Left figure 1 Right figure 2
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tem which is not complete in its own plane, but relies for its stability on the combined
action of at least two planes; without a certain mental alertness, the possibilities of such
constructions are easily overlooked.
The fact that stiffness can be provided by latticed construction at well as solid con—

struction is extremely important. It means that skin structures can consist of latticed steel—
work or precast concrete, as well as of in-situ concrete.
The main application for skin structures is still, of course, to roof construction, and

although they can be used for any roof that has more than one plane, the first to be
considered is the simple pitched roof. ThEre is, however, one point which must not be
overlooked. When long span slabs are used on edge, there is always the danger of ex-
cessive shear stresses. In practice, shear is not usually a seriOus matter when the ratio of
length to width of any slab is more than 10. Where the width of a slab is greater, it
might be necessary to thicken the slab beyond what is necessary to take the bending stresses
as well as to reinforce it. This additional shear .{reinforcement may often detract con-
siderably from the economy, particularly when compared with steelwork.
With a single pitched roof, the span of the roof slab is from the ridge to the eaves,

that is half the actual span of the whole roof. Instead of spanning the slab itself from
the eaves to the ridge, it is quite possible to span beams this way, and span the slab be-
tween these beams. Latticed construction can be used in place of a solid slab, and Figure
3 shows a factory at Stockton on Tees where this was done. In this building there are cross
frames every 85’ 6” and a latticed girder comprising four panels is arranged in the slop-
ing roof to take the component forces of the three intermediate ribs, simply spanning
from eaves to ridge, which in their turn, carry the purlins. While the purlins span only
21’ 41/2” the latticing, which does not use much material, makes it possible for the final
span to be increased fourfold.

Figure 4 shows the application of this type of construction to a northlight roof. With
a northlight roof it is usually possible to fabricate the steep latticed girder and transport

.it in one piece to the site, but the girder in the other plane is usually too wide for trans-
port as a whole. A practical method of erection is, therefore, first to erect the northlight
truss, stiffen this by means of the verticals of the other truss, and insert the diagonals after-
wards. Unless the chords of the two trusses which come together consist of a common mem-
ber, they must be joined together in such a way that they can act together. This might
present difficulties at the eaves if gutters have to be accommodated, as the chords have
to be spaced apart the width of the gutter, and it may be necessary to introduce hori-
zontal bracing across the gutter.
As the gutter in this case becomes an important feature, its dimensions should be de-

cided upon before the details of the roof are completed.



Below figure 3. Above, left
to right figures 4, 5 and 6
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It is often required that glazing should be arrang-
ed in front of a latticed girder, and generally the
diagonals behind the glazing do not obstruct the
light to any appreciable extent. To keep the diag—
onals as unobstructive as possible, round bars can
be used. '
The systems described so far referred to simple

pitched roofs. The same principle can be applied to
other shapes. Where two planes come together at a
ridge, the intersection acts as a beam, although
there is actually no beam there. With the simple
pitched roof, by considering this intersection as a
beam, the span of the slab was halved. Where even
this half span is considerable, it might be advan-
tageous to break the span up into smaller parts.
Slabs of about 6' to 8' are usually the most econom-
ical, as this allows the thickness of the slab to be
reduced to a minimum, say 21/2” to 3". Each fold
in the slab acts as a beam and the more folds there
are, the smaller become the local bending mom-
ents owing to the load being transmitted to the
folds of the slab.
This type of construction has been developed

more in reinforced concrete than in steelwork,
and further examples are given in figures 5 and 6.
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Figure 5 shows the roof over a brewery at Alton, England.
The sloping planes are almost completely glazed. Archi-
tects often ask for Virendeel girders to be used behind the
glazing believing that in this way the maximum amount
of light is obtained. This is a mistaken belief as, owing to
the very large local bending moments in such girders, all
the members become excessively heavy thus actually re-
ducing the glazing area. A simple latticed construction be-
hind the glazing usually takes away much less light. The
construction shown in Figure 5 is often the most econom-
ical, in spite of the depth of the beam at the bottom of the
sloping plane. A certain thickness must be left here in any
case for waterproofing, and as the light near the gutter is
the least effective, the increase in beam depth is not impor-
tant. The strip above the beam can then be left completely
free of obstructions.

Figure 6 shows a concrete roof where precast units were
used for the lower part of the slab in order to save shutter—
ing (ed. note: formwork). In this case the precast units
were trough-shaped, which makes them stiffer than flat
slabs. The units were laid side by side, in four rows, and
were temporarily supported on props along the folds of
the roof. The troughs were strong enough to carry their
own weight and that of the wet concrete to be poured on
top to complete the roof, so that no intermediate strutting
was necessary. The topping concrete was only 11/2” thick,
making a total thickness of the shell of 21/2”; however, the
stiffness of the shell was equal to that of a 6” slab, be—
cause the depth of the coffering, formed by the troughs,
was the measure of the rigidity. This great rigidity, achiev-
ed with a small thickness of concrete, made the construc-
tion extremely economical. This particular roof, which
was for a school assembly hall at Wigan in Lancashire, was
50’ across and approximately 90’ long. Figure 6 shows the
inside of the completed hall.

Again, such roofs can be carried out in latticed steel-
work. The distance between purlins in steelwork is usually
dictated by the maximum span of the roof decking. By
having several folds in the roof, the chords of the trusses
can act as purlins, with the roof decking spanning directly
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on to them. This saves intermediate purlins, which would tend to introduce bending
moments in the verticals of the latticed girders. As in concrete, the intersection or fold
between two latticed girders can be considered as a beam because any forces that act on
this line can be resolved into components in the two planes of the latticed girders, and
these components can be taken by the girders.

Figures 7 and 8 show two examples of laticed steel skin roofs, the first a roof with a
column grid of 60’ x 30’ and the second one of 90’ by 42’. In both cases the latticed gir-
ders were designed in tubular steelwork because of the greater simplicity of the con-
nections.
These girders can either be erected on a scaffolding, or alternatively one whole panel

consisting of several lattice girders can be assembled on the ground and lifted up into
position in one piece. With this latter method, however, sufficient repetition must be
provided to make the use of special lifting apparatus economical.
With all skin structures, whether in concrete or in steelwork, the slabs or girders in

the planes of the roof transmit forces along their own planes to points of support at the
ends. These points of support must be capable of collecting up the forces and transmit-
ting them to the ground.
There are several different methods of collecting these forces, but it must be remem-
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bered that at each supporting point vertical as well as horizontal forces can occur. In
theory, it would be the simplest to have a column under each fold, the columns rigidly
fixed to the foundations, so that they can take horizontal as well as vertical loads. This
can be cumbersome and result in too many columns and expensive foundations.
Another possibility is to have a rigid frame following the outline of the roof, and strong

enough to transmit all forces.
The third method, and that most frequent‘y adopted, is the diaphragm. For a simple

pitched roof, such a diaphragm may consist of a single tie member, which would tri-
angulate the system and bring the load to the columns at either end of the diaphragm.
Where there are more than two planes to the roof, the diaphragm must be latticed, suf-
ficiently triangulated to hold each point in position. Or latticed constructions can be
replaced by solid diaphragms. Figure 9 shows a number of possible diaphragms. It is
very important to appreciate that a skin structure acts somewhat like a large beam span-
ning between the diaphragms. Y
With all skin structures there must, therefore, be at least two diaphragms or lines

of supporting columns, and the most logical place for these is in the gable walls. If a
building is too long for just two, intermediate diaphragms, together with their support—
ing columns, can be introduced.
One important point to be considered with this type of roof is the long edge (usually

at eaves level). It has been stated that the intersection of two slabs, at an angle, can be
considered to act as a beam, but of course, along the edge of the building there is only one
slab. This edge usually coincides with the outside wall of the building and, in this case,
it is a simple matter to Support this edge directly on the wall, or on columns, with a com-
paratively shallow beam spanning between them. If one or both sides of a building are
to be left open, the last roof slab must cantilever out from the rest of the roof. With this
arrangement it is better to keep the outer slab as small as possible. There is no difficulty
in cantilevering a concrete slab, but with latticed steelwork the vertical members of the
girder would have to be rigidly connected to the adjoining girder to transmit the canti-
lever bending moment.
With factory buildings, it is often necessary to support extra loads on the roof con-

struction, e.g., cranes, gantries, etc. With traditional construction, these are suspended
from the roof trusses, or from special beams spanning between the roof trusses. The
same arrangement might be kept to with skin construction, by spanning a gantry or
crane from diaphragm to diaphragm, provided these are not too far apart. If a gantry
or crane runs across the folds, it can be supported from each fold, thus reducing its span.
If it runs parallel with the folds, it is better to arrange it immediately under a fold,
and there will then be no difficulty in supporting it at intervals along the fold. The



beam along any fold is quite capable of taking this additional load and of resolving it
into components in the planes of the roof.

Skin construction need not be restricted to ordinary pitched roofs, or a series of
pitched roofs. They can be hipped at the ends, or can slope in four or more directions.
This can be done in solid concrete (and if there are a large number of small planes this
would gradually be coming back more to the standard shell construction) or in latticed
construction, either precast concrete or steelwork.

Figure 10 shows an example of latticed work, with precast concrete compression mem-
bers and round steel bars for the tensile members. This roof is on a square base 40 ft.
x 40 ft., but the type of construction could be used for larger buildings or for rectangu-
lar ones, and the material changed to either steel or timber.
When the number of folds in a skin roof is greatly increased, so that the span of the

planes becomes smaller and smaller, the result is what is commonly called shell con-
struction. The distance between the folds becomes so small that the roof outline is a
continuous curve. This type of construction is the most frequently used, and lends itself
more to reinforced concrete, the medium for which it was originally designed. That it
is possible to use latticed construction however, is proved by the famous hangar near
Rome, designed by Nervi, which was a diagrid construction of precast concrete, the
members having a straight axis but a curved upper surface. Provided that light cover-
ing materials can be found which are suitable for curved surfaces, it should be possible
to develop this system, both in precast concrete and in steelwork, or timber and alumi-
num, to produce lighter shells than shell concrete. The Dome of Discovery on the South-
bank for the 1951 Exhibition was constructed on this principle, but in aluminum, see
figure 11.

Left to Right
Figures l0, H and 12
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Left to right Figures l3 ,l4 and l5

With an ordinary shell construction, the local bending is reduced to a minimum, but
against this advantage must be set the cost of the curved shuttering. Only if the shuttering
can be used for several buildings, or if the repetition within one building is extensive,
can this disadvantage be ignored. An ellipse is the ideal shape for a shell roof, but here
the shuttering would be even more difficult. Another type, which is easier to shutter, and
is becoming very well known, is one where the ellipse is replaced by a segmental arch; the
vertical portion, which resembles a beam, is, in fact, the tension part of the shell. See
Figure 12. Many constructions of this type have been carried out, and very frequently
the shell is constructed across the longitudinal axis of the building so that a better repe-
tition is obtained. This is also shown in Figure 12.
Various shells of this type have been used for northlight roofs and for cantilevers, and

in Figure 1?) can be seen a case where the diaphragm is placed on top, and the two halves
of the roof cantilever out on either side. As this is for the roof over a railway station
platform, it was essential to keep the outer edge free of columns or supporting walls.
A similar construction in steelwork can be seen in Figure 14. This is a northlight

roof for a factory in a new town south of London. It consists of a number of tubular
latticed girders side by side forming the surface of a shell northlight roof, very similar
to the more standard types of concrete shells. The construction is covered by insulation
board and curved cement asbestos sheeting. While the outer appearance is that of a
curve, the cross section is, in fact, a series of straight lines, each at a slight angle to the
next one. The loads occurring at the folds are resolved, as usual, into the components
in the plane of the roofs.
As already mentioned, a useful application of shell construction is the dome. An ex-

ample of this, in addition to the Dome of Discovery seen in Figure 11, is the rubber



factory at Brynmawr shown in Figure 15. A dome on a square base is a problem of its
own, and at Brynmawr, as can be seen, segmental spandrels were used.

It can be seen from some of these examples that steelwork can be used for skin struc-
tures just as easily as concrete. Particularly for industrial buildings, steelwork, covered
with light roofing material, is often to be preferred, as alterations are easier, and in in-
dustry, alterations must always be considered. On the other hand however, the use of
precast concrete as permanent shuttering makes concrete cheaper than steelwork, but it
is too early yet to lay down definite comparisons.
One point must always be kept in mind. It was mentioned earlier that shear stresses

are of vital importance. Reinforced concrete, unfortunately, is particularly bad for taking
shear, so that with shell concrete the shear stresses have to be taken entirely by steel re-
enforcement. For heavy shear, the amount of reinforcement required for this purpose
might be greater than the total tonnage required for a much lighter latticed steel roof. The
position has been improved considerably by the introduction of prestressing as this pro-
duces compression stresses which reduce the diagonal tension over part of the area.

If the development of latticed steelwork for skin structures continues its present trend,
I think it can safely be predicted that ordinary reinforced concrete may be used only
for shells of up to about 30', and steelwork and prestressed concrete for the larger ones.
Whether the shells will be curved or a series of straight planes, depends on economy and
architectural requirements, but as has been shown by the preceding examples, the archi-
tect has a wide field from which to select his roof profile, and he can be confident that
concrete or steelwork, curved or straight, the engineer can meet his needs.
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visitors to the school of design for the spring semester:

Patron Subscribers

R. BUCKMINSTER FULLER

RANSOM R. PATRICK

BRIAN HACKETT

MARCEL BREUER

MARIO SALVADORI

(Month of February) Designer conducting spe-
cial problem with a group of architectural
students.

Head of the Department of Art, Music and
Aesthetics at Duke University, Durham, North
Carolina, conducting a course in the Philosophy
of Design with with fifth year students.

(February 20 to March 20) Senior Lecturer in
Landscape Architecture and lecturer on town
planning at the University of Durham, England,
acting as visiting critic on special problem with
advanced students in Landscape Architecture
and Architecture.

(March 28, 29, 30) Architect from New York
conducting seminars on his work. ‘

(April 4, 5, 6 and May 1,, 5, 6‘, 7) Professor of
Civil Engineering at Columbia University, New
York, conducting special problem in thin shell

Richard L. AeckArchetectural Forum _Louis H. Asbury and SonMr. and Mrs. Herman B. Asnas,William W. AtkinsPietro BelluschiRolland E. BlosserGeorge BoasHarold Boericke, Jr.Leslie BoneyJames L. BrandtJohn T. CaldwellFelix CandelaWilliam A. ColemanDeitrick, Knight .and Assoc.'Frank A. DePasqualeAlden B. DowDr. Paul EllantLawrence A. EnersenJames W. FitzgibbonR. Buckminster FullerCharles M. GoodmanRoy GussowW. N. HicksEggers and HigginsRobert Lee HumberL. L. IveyMiss Jean M. JenkinsPhilip C. Johnson

Atlanta, GeorgiaNew York, New YorkCharlotte, N. C.Bronx, New YorkNew York, N. Y.Cambridge, Mass.Bethesda, MarylandBaltimore, MarylandWashington, D. C.Wilmington, N. C.Raleigh, N. CAsheville, N. C.Mexico 1;, D. F.Kinston, N. C.Raleigh, N. C.Southern Pines, N. C.

Raleigh, N. C.Forest Hills, N. Y.Washington, D. CRaleigh, N. C.Raleigh, N. C.New York, N. YGreenville, N. CRaleigh, N. .Norfolk, Va.' New Canaan, Conn.
Q.I

structures with fifth year class.

Kahn and Jacobs2‘ Henry L. KamphoefnerEdgar Kaufmann, Jr.Jeffrey LindsayJohn B. LippardEdward LoewensteinAnthony LordLyles, Bissett, Carlisle and WolffGeorge MatsumotoLewis MumfordRobert W. McLaughlinA. G. Odell, Jr.Page and SmithGeorge W. QuallsSam RosenbergSchnedl and SchnedlG. Milton SmallF. Vernon Smith, Jr.Southern ArchitectHarry J. SpiesGlenn StantonWalter Dorwin TeagueEdwin G. ThurlowRussell S. WalcottRalph'WalkerEdward W. WaughWilliams, Coile and BlanchardF. Carter WilliamsMr. and Mrs. C. H. Winecojj‘

New York, N. Y.Raleigh, N. C.New York, N. Y.Montreal, CanadaCharlotte, N. C.Greensboro, N. C.Asheville, N. C.Columbia, S. C.Raleigh, N. C.Amenia, New YorkPrinceton, N. J.Charlotte, N. C.Raleigh, N. C.Philadelphia, Pa.Raleigh, N.Reidsville, N.Raleigh, N.Charlotte, N.N.N.
0009Charlotte, ‘Cranford,Portland, Oreg
.N§so

Newport News, VirginiaRaleigh, N. C.Winston-Salem, N. C.
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