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1.5 Introduction - Rates of genetic improvement of plants and animals are
affected by numerous variables, e.g., system of breeding, method of
selection, mode of inheritance of important characteristics, the ex—
tent to which phenotype responds to non-genetic variables, reproduc—
tive rate, etc. While we recognize the qualitative effects of many
such fachbrs, we do not always knew the magnitude of these effects
as precisely as we would like. In this course we shall be concerned
with the quantitative effects of factors which influence the means
and variances of genetic populations.

The material to be presented will fall far short of what might
be considered. Limiting factorS'Will be time, the fact that the
quantitative effects of certain known variations in genetic mechanism
have not been investigated, and the competency of the instructor.
The general procedure will be to consider simple genetic situations
first, then generalize to more complex situations where possible.

The subject matter will be mathematical in nature but for the
most part nothing more complicated than rather simple algebra will
be called for. In the few exceptional instances unfamiliarity with
the mathematical tools should not interfere with understanding what
is.involved.

Perhaps the most important thing to remember in considering a
subject such as this is that mathematics like all forms of inductive
logic leads to correct answers only when basic assumptions are
correct.. Consequently each member of the groups should be on guard
against violation of genetic principles and against application of
formulae derived in situations where assumptions involved in tho
derivations do not hold. On the other hand it will frequently prove
useful to analyze an artificial situation as a guide to what occurs
in a situatien'which is related but cannot be completely specified.

II. Statistical formulae‘

A. Variance (0)2)

1. Consider a population the individuals of which are

X1, X2, X3, . . . . o

The mean (i) is

X1+X2+X7Loooo
N
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2 = sgx - i2? = 30(2) -i§315\f)-2-The variancem, N (1)

N

Let x1 =X1 - 53, x2 =X2 - 3, etc.
2 g '

Then avg = ”3x (2)-N , ,
2. Form'a new population by dividing each X by 6.-

2C; ' 35—2- , 225 o o o oG c c

ZS]- +33% + E: e o o o "'
Its mean equals 0 “L A z: 22

N c

*1 .. _: ,‘ x1 X2 X
2;" c '5" 3-112. etc-

3: 2
The variance 2 S( '6' ) __ 8x2 __ 0"ch

N N02 :5 (3)

B. The correlation coefficient (r) and the regression coefficient (1))

Consider two populations

X1, X2’ X3, 0 o u o with mean i, and

Y1, Y2, Y3, . . ‘. . with mean "f.

_ so: - 56x}:- i)_
4%: - i)2.s(y - i‘)2 (4)

or if Xlle-i, xzzxzax, etc.

and y1=Y1-?, y2=Y2-‘§, etc.

r S'xy/‘N Sxy.—a..-m 5
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so: — as - i?) z Sm
bY'X so: - 502 8x73 (6)

.___ S(X "' SEXY " l?) : Sxy
bX'Y S(Y -TY')2 Syz A (6a)

:3 3g __ ‘ s s __ .‘ ar _ - XV. xy _ b . b-
' Sx .Syz sz.Sy2 YOX _ KOY (7)

The regression equation for estimating Y from.X is’

Y6 = Y + bx

Y - Y is the difference between an observed Y and the value
that would have been estimated from the regression equation on
the basis of the associated value of X, hence is called a
deviation from regression.

Y - Y6 = Y - Y - bx = y - bx

S(Y - Ye)2 == S(y - 13302 = S(yz - 2bxy+ bzxz)

H
2

Syzq " 2bey + 132sz z: Syz .- 2 SW'SXy + sxy'sxytsx
82:2 3x2.sz

Syz - (Sada/3x2 (a)

This value is called the sum of squares for deviations from
regression‘
(Note: The method of computing b is such that S(Y * Ye)2 is

a minimum, i.e. it is smaller than would result if any other
value were substituted in the regression equation for the
b obtained.)

Y -‘Y is the deviation of an estimated value of Y.frdm the
mean of Y. S(Ye - Y)2 is accordingly called the regression
sum of squares.

S(Y -?)‘=Sb2x2 = 133sz = SXY'Sxy-sz __ (sxy)2
‘3 2 2 ” “"‘""'" (9)Sx .Sx 8x2

.. 2 2s(Y~Y)2+s(Y +Y)z = whine)... +(Sxy) _ 2
° ° 3x2 . :3?“ (1°)
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'We can therefore state that the sum of squares for Y is the
sum\of two parts: (1) The regression sum of squares, and
(2) the sum of squares of the deviations grom regression.
Or we can say that the total variance §X_, in Y can be divided

Ninto two parts:

S Y - Y
‘1;41-——Z— a the variance in Y associated with variance in X,

N . and

S(Y - Ye)2
--qf--- (commonly called the standard error of estimate),

the variance in Y independent of variance in X.

C. The variance of sums and means

Consider two populations

A1, A2, A5 . . . . . . with mean K, and

B1, 132, B5 . . . . . . with mean B.

2.. Saz' 2 sz
03" “ii" ““8"?

New let a third population be formed as follows:

01 = A1 + B1,. 02 = A2 + B2, etc.

- ~ A. + B + A 4’ B 0.. o o u- 1"c .. 1 1 2* Q 2A+ B
N

01 = C1 - 5 = A1 + B1 - K - 5’ = a1 + b1

etc.

0.: = 302 ._ S(a * b)2 __ S(a2 +2a'b + b2)
N N N

___ fig? sz ZSab 'N Y“ “16:— : 0%. 4* fig 4" erB 01 0E (11)

(see equation 5)
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If A and B are uncorrelated (r ‘ = O)'as they would be if
they were designated A1, A2, A5, etc., and Bl, B2, B5, etc,,
at random, the variance of C(gfg) is found to be the sum‘ef the
variances of A and B.

This can be extended for sums of any‘number of variables. Thus

a
0”%A+B+C+D)=.0‘i+0’3+d‘€+a“§ . (12)

provided none of the Variables are correlated.

Or
03 _0,3 2 2
(X1.+X2=1=...XN)" X1+0‘3:2""+°"XN

If X1, X2 . . . KN are all drawn fram the same population

. 0‘2 :: = = 2 :: 0‘2
X1 06:2 . . OJXN

And
2 ._ 2

0"(X1 +X2 one. +XN) "No,

New if this sum, (X1 + X2 .... + XN) is divided by N to obtain
a mean, i, applying (5) we find

2-1%?0'55- N2 =95. (13)
i

the formula for the variance of a mean.
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III. The composition of phenotypic variance.

Consider a population of organisms (they may be any kind of
plant or animal) and a single characteristic of these organisms,
e.g., height at a specified age. The height of an individual is
the resultant of its genotype and the various environmental factors
which effect height, A uniform environment for all individuals of
a group is an abstraction never an actuality. we must recognize
that the environments (defined to encompass the effects of all factors
other than genotype) of plants Vary even though the plants are growing
adjacent to each other and that the environments of animals vary even
though all are handled as nearly alike as is humanly possible. A
little thought about soil variation, competition, incidence of para—
sites, accidents of various and subtle sorts, etc., will suggest
many uncontrollable sources of environmental variation.

Let the individuals in the population be numbered

1, 2, 3 o o o

P P . . o be the measured heights of those individuals,1’ P2? 3
G1, G2, G3 0 - 0 be the genotypes of those individuals,

and E1, E2, E3 . . . be the environments under which they develop.

' E'will be the mean height of the population.

Now suppose individuals all of genotype G1 could be developed
one under each of the environments E1, . . o, and that the
same could be done for individuals of caEeh o the other genotypes
G2, G5, G4 . . 0. For an individual with genotype 51 and raised
in environment E1, let the measured height be P ; and for an
individual with genotype G2 and raised in environment E3, let the
measured height be P23. Now let

P11 ~ P = $11 = 011 ' , (14)

P25 ' P = 625 = 023
Note: In all cases the first subscript number attached to

P, g, or 0, indicates genotype and the second environment.

g +g +g éooog
1; 9”; N 13 IN = g1, the effect of the

genotype G1 averaged over all environments. “(15)

Thenv



Statistical Concepts in Genetics — 2 - Mimeograph No. 2

. .1. + II- c o 0$21 $22: :23 gm = g2, the effect of

genotype G2 averaged over all environments.

e11 + e21 + 951 + . . . 6N1 = e1, the effect of

environment E, averaged over.all genotypes. (16)

etc.

Note: When only one subscript number is used it refers to
genotype if used with g, environment if used With 6.

Now P 1 - P is not necessarily equal to g + e . A specific geno-
type wil not have the same effect in all environments; a specific
environment will not have the same effect on the development of indi-
viduals of different genotypes. Is it the effect of the genotype or
the effect of the environment that changes? we cannot distinguish
which is true and resolve the situation by saying that genotype and
environment interact. '

nflP23 - : g2 + e3 + i23 or i23 : P23 - P - g2 - 95

You will note that the i's (interaction terms) are the amount by which
the deviation of the phenotype from the mean fails to be the sum of
the average deviations for the genotype and environment involved.
In general, '

Pij .- P 3 E11. + ej + .113, (17)

The phenotypic variance is

S P
N

and from (12), II, remembering (l7)

52 : 5T2 * 2+ 2
p a re (ri

provided there are no correlations among g, e, and i.
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It is obvious that q and e will not ordinarily be correlated in plants
and animals(except man) since an individual organism does not find its
self in as specific environment as a consequence of its genotype; the
environmental and genotypic variations are random with respect to each
other. In humans this is much less likely to be true since, to an ex-
tent, the genotypes of a child's parents will be a source of variation
in the same direction in both the genotype and environment of the child.
The effect of this will vary of course depending on the trait being
considered.

As a consequence of the way in which it is defined 1 will not be
correlated with either 0 or g. Hence we can state that

z_222Cr? _ «T; + <73 + Owi p (18)

or that phenotypic variance is the sum of three parts (1) variance aris-
ing from the differencesamong the average effects of genotypes, (2) var-
iance arising from the differences among the average effects of environ,
ments, and (3) variance arising from the interaction of genotype and
environment.

For most purposes in this course 0“§ and org'will not be distinp
guished from each other but will be referred to together as environmental
variance. However, it should be remembered where variance arising from
the interaction of genotype and environment falls and that it has not
been ignored. There are problems in which a“? would need to be considered
separately.

IV. Preliminary consideration of mass selection for a single trait.

The effectiveness of mass selection depends on four primary factors:

1. The proportion of individuals available that must be selected.

2. The variance of the population from which selections are to be made.

3. ‘The proportion of the phenotypic variance which arises from differ-
ences in genotype.

4. Whether the average genotypic value of the progeny of selected
parents is as great as the average genotypic value of the selected
parents. - . .

The selection differential (hereafter to be denoted by the letter s)
is the mean phenotypic difference between selected individuals and the"
population (including the selected individuals) from which they were
selected. Obviously s cannot be as large if a high proportion of the
population must be us3d in producing the next generation as if only small
number of individuals need be selected. It is equally clear that s cane
not be large if there is little variation in the population from which
selections are to be made.
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With regard to the third factor listed above it is clear that if
phenotypic variance is largely of nonrgenetic origin a large selection
differential may mean very little in terms of genotypic superiority of
the selected groups. The relationship of phenotypic superiority (s)
of selected individuals to their genotypic superiority can easily be put
into quantitative form. It is statistically a regression problem. ‘Wc
are dealing with two ariables (phenotype and genotype) and wish to pre-
dict one (genotype) knowing the other (phenotype). We need to know the
regression of genotype on phenotype (b P)vin order to set up a prediction
equation. 5 .

Note: Genetypic value is defined as performance expected of a
genotype under average environment not as value for breed-
ing. Thus when dominance is complete Aa and AA have the
same genotypic value.

Let genotypes be measured in terms of their effects (g‘s) and _
phenotypes in terms of deviations from the mean phenotype (p g P - P).

P=E§"’0"'i (17),:11

Since a“: z a": + 4% + 0% , I (18), III

Sp2 = $932 + 302 + 312.

Ssp = Ss<s + 0 + i) = 832 + See + Sci,

but since g is not correlated with e or i,

Sge and Sgi are each zero.

Hence Sgp = ng
$82 3&2 a;and bgp a jaw ‘ 2 -——E =

ng + $02 + Si2 3* E?)

Note: There is no correction term to be subtracted from ng,
Sge, or Sgi, , since Sg, Se, and Si, like Sp, are all'
equal to zero. This can be shown from (14), (15), (16),

NbW’WO can set up the prediction equation for, genotypic superiority
of selected individuals.

Letting gs ; average genetypic value of selected group

gs - g g genotypic superiority of selected group

and in regular regression equation form

g8 - a (=) bgp (PS - '15)
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Since E = O and Ps - § 3 s, the selection differential

(Ps = average phenotypic value of selected group)

we may write,

gs (=) SbSP where gs = genotypic superiority

Notezp (=) is used to indicate estimation rather than strict
equality. Sampling error is present.

Example: Suppose one has records on butterfnt production in
‘ene lactation for each of 100 dairy cows for which the
mean production was 300 lbs. of butterfat and the stand-
ard deviation 40 lbs. Suppose further that the 20 cows
'with the best records are to be used as the foundation
of another herd. How much will these 20 be expected to
be superior genotypieally to the entire group of 1002

Assuming that the distribution of fat production was
approximately "normal“ s can be estimated making use of
characteristics of the “normal" curve. 'With "normal"
distribution 8 : z/p standard deviations where p is the
proportion selected and z is the height of the ordinate
which divides the area under the curve into portions
relative in magnitude to the proportion selected and the
proportion rejected. The value of 2 can be obtained
using tables I and II of the Statistical Tables published
by’Fishcr and Yates (1).' table I is entered with P equal
to either 2p or 2(1 - p), whichever is 1.0 or less.
(The factor, 2, is introduced since table I gives the
relative deviate, x, beyond which a given proportion of
the population, I; is found when both tails of the curve
are considered; we are interested in only one tail of
the curve.) Table Il is”then entered with the x obtained
frem table-I to'find 2. In our case 2p : .4,‘§’for
P g .4 is .8416, and'Z'for x a .8416 is .2799.

s g 3.: '2299 g 1.4 standard deviations
P O H
1.4 x 40 a 56 lbs.

gs . 56 bgp

bgp is probably about .3 ~7.35 for cows in the same herd
. (2,5)

Using bgp - .3, we get

gs z .5 x 56 8 16.8 lbs. as an estimate of the genotypic
superiority of the top 20 cows.

Note: values of s for a given series of‘p are listed by Lush (4).
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It should be noted that While g is directly proportioned to b p
it does not necessarily vary linearly with b because when bP ig
reduced as a result of an increase in Se2 + §12,S Will be larger,
other things being equal. For example, in the above problem

gag = 40 x 40 = 1600

If bgP were .3 as assumed

bgp = j;i?‘ = .5 and cr:- .3 x 1600:480 .

avg +-Cyi : 1600 - 480 c.1120

Now suppose bg had been only .15 as a consequence of<gug + OPE
being 2720 insgead of 1120.

In that case the standard deviation would have been

1J2720 + 480 = 45200 = 56.6

and s would have been 1.4 x 56.6 3 79.2 instead of 56.
Then*We would have found

gs a .15 x 79.2 = 11.88

which is 70% of the gs expected when bgp ms .3 and the standard
deviation 40 instead of 50% as might have been expected.

of
Whether the average difference between genetypic value/the progeny

of selected and unselected parents Will be as large as the difference
in genotypie value of the selected and unselected parents (or half that
large if selection is practiced only among females and both selected and
unselected female mated to the same male) will depend on Whether gene
action is strictly additive. It will not be as large if either dominance
or gene interactions are invalved. This matter Will be given detailed
attention in a later section. ' »
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V. Gene frequency and the distribution of genotypes when mating is
random.

The frequency of a particular gene is defined as the proportion
between the number of that gene in a population and the total number of
loci at which it might have been present. Thus, in a population of 100
dipolid organisms there are 200 loci at whichfispecific gene might be
present. Suppose that among 100 organisms,_30 are AA, 60 As, and 10 as.
Thzn there are 120 A genes and the frequency of that gene is 120/200
& l, . -

.we will use the letter 9 to designate the frequency of desirable
genes. The frequency of their allelomorphs will consequently be 1 - q.

In a random mating pOpulation the ratio of genotypes homozygous
for the desirable gene, heteroz ous, and homozygous for the less den
sirable gene will tend toward q : 2q (1 ~ q): (1 - q)2, This can
easily be demonstrated as follows: '

The probability of a gamete containing A is obviously g and
the probability of 2 specific gametes, 1.6. two combining to form
a zygote, both containing A is qz. Thus the proportion of AA
zygotes will be 3?. ‘ ’

The probability of a gamete containing a is l - q and the
probability of 2 specific gametes both containing a is (l - q)2.
Thus the proportion of gg zygotes will be (1 - q)2.

The remainder of the zygotes must be of the An type and the
proportion in which they appear will consequently be 1 - q? -
(1 ~ q) : 1 - q2 - 11-2q - q = 2Q - 2q2 = 2q (1 - q).

When two gene pairs, say Aa and Eb, segregate independently, the
various possible genotypes will tend to have the following relative fre-
quencies: ‘ '

Gengtype Frequeggy | “ Egegueggy of Ag, Ag, egg as

AABB q§ qfi ,
AABb q§ 29b (1 - qb) qg

AAbb q: (1 - qb)2 ' . a

AaBB . Egg (1 - qa) q§

AaBb ‘ an (1 - ea) 2qb (1 - ab) an (1 ' qa)

Aabb Zea (1 ' qa) (1 - qb)2
aaBB (1 ~ qa)2 qfi
aaBb (1 . qa)2 Zeb (1 — qb) (1 - qa)2
aabb (l - qa)2 (1'- qb)2
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'The key to these relative frequencies is obvio s. Fer example, if
'the probability of a netype containing 2\A's is qa and of a genotype
containing 2 B's is 2 the probability of a genotype containing both
2 A‘s and 28‘s is q§ qb.

Linkage affects the population frequencies of genotypes only in slowu
ing up the attainment of equilibrium values (the values listed above)
following a cross of contrasting genotypes. Once equilibrium is reached,
it tends to be maintained so long as mating is random.

When the effective population size is limited, i.e; when inbreeding
is practiced, random departure from equilbrium values may be sufficiently
extreme to result in the loss of a gene from the population with the result _
that its allelonorph becomes homozngus in all members of the population;
That is why inbreeding results in increased homozygosis. We will return
to this subject later. - ’
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"Repeatability" and related concepts

Animals and perennial plants give expression to some of their traits
recurrently. The yield of a plot of strawberries, an apple tree, or a
plot of alfalfa; litter size in swine; annual milk production in dairy
cows are examples. By measuring a trait more than once the genotype of
an individual is more accurately estimated. HOW'many observations is it
worth.making on the same individual or plot (group of individuals)?
Three factors are involved

1' The proportion of the phenotypic variance which results frOm
genetypic variation.

2. The extent to which environmental effects remain constant for
an individual from one expression of the trait to another.

3. The occurrence of interactions of genotype with age of the organ-
ism.

The third factor will be omitted from consideration at first since its
relation to selection is distinct in nature from that of the first two.
The situation will be simplified further by treating variance arising
from the interaction of genotype and environment as though it arose from
variation in environment.( This has no effect on conclusions to be
reached).

Then p : g + e

where p, g, and e are defined as before.

Now let e = c + v

where c is the average effect of the portion of an individual's
environment which_remains constant, and _
v is the effect of the portion of an individual's environment
which is variable from one expression of the trait to another.

Then for any single expression of the trait

p = g + c + v

Successive expressions by the same individual may be symbolized as

pl 3 g +'c +rv1 !

p2 ; g + c + v2

pn + c + VhII
‘0’?

S(p) H

‘5 ; g + c-+ v

When g and o are uncorrelated, as will usually be the case in normally
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interbreeding populations of plants and animals (other than humans),

v§=vg+ vc+ XIV: vg+ vc+ vv (19)
I1

Notes: (1) V will be used in place of {7‘2 from this point on -
less work in typing.
(2) s will be uncorrelated with c since otherwise it would

.be in part a constant effect of environment. Correlation of
v With g would also require that v be in part an effect of
environment constant for an individual since g is constant
for individuals.‘

The covariance of two variables is their sum of products divided by N.
Therefore
132%:M and

«i 2 2 .j 7’ ““"””'\,§SX 9 Sy \3 X '0 VY

b _ 3x1 _ Gov XY
‘ ng - VX

The covariance of'fi and ( g + c ) is

3(g+o+?{)(g+c) Sg: + Sci?‘ .
M .. t, g , . 3: V +V

N N s 0 (20)

and the regression of (g + c) on‘E is

V + V
b \ ,r,M (21)
(g + o; ' P V + V + —~X

g c n

Note: The regression of (g + c) on'E is equivalent to the re—
gression of future expressions of the trait on p since (g + c)
is the value around which future expression will vary.

When n is One, this is the regression of (é + e) on one observation
of the trait; it then becomes

V + VC
+ T ‘Vg Vc r+ Vv V

Lush defines "repeatability" as the correlati n between single
observations on the same individual and uses to denote it. we will
use R to avoid confusion with the use of as a symbol for correlation
in general.

R = .EBXQBLEZ = Vg + Vb

W95 V92 We + Vc + VvPWg + Vo + sz>
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If Vvl : sz (Variance of effects due to temporary differences in
environment is of the same size for all expressions oi the trait)

v +Vc'
: . +7. Vg + Vo + xvR (22)

'We shall consider "repeatability" as the regression of (g + c) on
a single observation of the trait. R can be substituted in eq.(21)
to put it into more compact form.

V2; + V0 .. mm + vc)b(~ + ._s C) - p = V, .. ‘
Vg + V0 _+ "71" n(Vg + VC)+VV

- n(VE + V0)
Vg + Vc + VV +(n — 1)(vg + v0)-

Dividing numerator and denominator by (Vg + Vc + VV)
and substituting R according to eq.(22). '

b ~ = “RM
(59 + 0)“? l + {n — l)R (23)

+New vg vc . Vg * v2
WW I . ~ ‘ "' u . , ,
V + V + v V, + ' Tg; c ~5— s VG Jg + V"3 + Vv/n

‘ which is easily shown to be the regreSsion of
genotype on the mean of n observations of the
trait, hence we have

nR Vgb “- .W . 2

It is apparent that increasing n causes the same percentage change in
b-— a1d b -— . It is also obvious that b- « b u - ‘
sp’ (g+<=)'p 5135: (s+0)"P

and hence that future performance is more accurately estimated frOm
past performance than is the genotypic value, unless there are no per-
manent differences (between individuals) in environment.

The effect of increased numbers of observations on progress
made through selection can now be demonstrated. Genotypic superiority
of selected individuals as shown in Section.IV can be estimated as

' gs (z) Sbgp

where p was the phenotypic expression of the trait
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in terms of deviation from the phenotypic mean.
In this case we must substitute bag , and

ES (-1) '3ng

When n (the number of observations per individual is increased V‘
is decreased 1 see eg. (19). Since V5 is the denominator of bgg

' A .9
the latter is increased accordingly. However, the size of s (the sel-
eotion differential) is preportional to.¢'v- so 8 for any given
proportion to be selected is decreased when n is increased.

Let s: b-— , and V represent the selection differ—
ential,‘ the reggession coefficient: and the pheno-

'o varicnm he 1 e' 3 -«typl. a co W'en n a 1 and s , b gp: and VP rep-
resent their values when n is a number other than 1.0.
Now suppose that for a given n

: .—~Ea

Then
1 V" +170b 3%; ab...—
gp VP/h EP ’

S : s/fi2rfi and
l .n_: .ab-— 8 nfif‘: ‘a sh —-:-sSC) gp /.. “a gp Wes (25)

For example, if n is increased enough to make a equal
to 2, i.e. to halve VS , genotvpic superiority ob‘
tained through selection is,{2? or 1.414 times as
great if the same proportion is selected in each case.

Values of‘\?§‘are tabulated below for a small set of values of n and R.

R
..__ .3; .2. :3. Ln; :2. . ‘..,__..1~0

2 1.35 1.29 1.20 1.12 1.05 1.0
5 1.58 1.46 1.29 '1917 1.07 1.0
4 1.75 _ 1.58 1.35 1.20 1.08 1.0
5 1.89 1.67 1.59 1.21 1.09 1.0
6 2.00 1.75 1.41 1.22 1.20 1.0
53 3.16 2.24 1.58 1.29 * 1.12 1.0

It is quite obvious that unless Vv is large relative to Vg + Vs
added records on the same individuals is an inefficient means of
speeding progress by selection. ' V

In the case of plants that can be propagated vegetatively the
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Situation is modified. The question then has two parts. How many
plants of the same genotype and how many observations per plant will
be worthwhile? By an extension of reasoning used in the simple case

v. ‘_ V + _—~ + .,*_ where p is a mean for nP g m 'fim
observations on each of m plants.

V.
bf": .. g
gp V V

17—1-4--‘?“----+vm mm

As before when n and/or m are changed from one let

V
V— = -—B~
P 5

Then as before

1. _ ....E3 8 (flags

Given V /V , the proportion of phenotypic variance of e
single observation which is of genotypic origin, and

‘ Vc/(‘Vc + Vv), the proportion of environmental variance
arising from environment constant for individual plants,
«ra'can be computed for varying values of n and m. A
table of such values is giVen below.

Vg/Vp ‘ :V O l o 4» o 8

.3 V0/<V°+VV) : ;__ :3. '8 11 '4 :E. .11. :2. :.1

1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ;1.0 1.0
2 1.50 1.17 1.05 1.17 ”1.10 1.05 1.05 1.05 1.01
1 1.55 1.55 1.55 1.19 1.19 1.19 1.05 1.05 1.05
4 1.50 1.50 1.08 1.50 1.17 1.05 1.08 1.05 1.02
2 .1.70 1.55' 1.41 ' 1.55 1.28 1.22 1.08 1.07 1.05
1 1.75 1.75 1.75 1.55 1.55 1.55 1.08 1.08 1.08
8 1.85 1.58 1.09 1.58 1.21 1.05 1:09 1.05 1.02
4 2.01 1.70 1.44 1.42 1.55 1.24 1.10 1.08 1.05
2 2.11 1.97 1.82 1.44 1.41 ’ 1.57 1.10 1.09 1.09
1 2.17 2.17 2.17 1.45 1.45 1.45 1.10 1.10 1.10

15 2.01 1.42 1.10 1.42 1.25 1.05 1.10 1.05 1.02
8 2.25 1.79 1.45 1.47 1.55 1.24 1.10 1.09 1.05
4 2.55 2.11 1.85 1.49 1.44 ' 1.58 1.11 1.11 . 1.09
2 2.44 2.55 2.25 1.51 1.49 1.45 1.11 1.11 1.10
1 2.49 2.49 2.49 1.51 1.51 1.51 1.11 1.11 1.11

5.15 5.15 5.15 1.58 1.58 1.58 1.12 1.12 1.12

certain facts stand out.
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When Vg/‘VP is high increasing either n or n is of
little value.

When Vc/(Vc + Vv) is even moderately high increasing
n is of little value, e.g. with m a 2, v /VP : .1 and
Vc/(Vc + Vv) = .4 increasing n from 1 to 8 changes
vxfa'from 1,55 to 1,79. Put differently making 8
observations per plant instead of 1 increases the
effectiveness of selection only 33% as a return for
carrying the material 8 times as long.

«$3718 a maximum for any value of nm when n = 1.
However, we must not construe this to mean that it
is always inefficient to increase n. The matter of
genotypewage interaction (not considered previously)
now comes into the picture. Obviously, if such an
interaction has any possibility of occurrence obser—
vation at any one age might be misleading. ‘What can
be concluded is that if more than one observation
per plant is to be made because of the possibility
of an age—genotype interaction, the observations
should be spaced widely in years. A few observations

spaced over a wide period of time will‘catch the
interaction and for reducing environmental variance
of the mean it is more efficient to increase m.

~Suppose we Were working with a plant for Which
‘7sz = 91 and Vo/(Vc + Vv) = .4 and that we
wanted to make two observations (Spaced several years
apart) on each plant as a check on change in per-
formance with age. If we tested 8 plants per geno~
type our progress would be (2.36 — 1.97)/ 1.97 or
20% greater than if 4 plants were tested from each of
the same number or genotypes, However, if the limi—
tation on our work is in terms of total numbers of
plants that can be tested instead of the number of
genotypes that can be tested, we could test tWice

as many genotypes if only 4 plants each were raised,
And if the number selected is to be constant regard-
less of number tested the proportion selected would
only be half as great if twice as many are tested,
Suppose 10% are to be selected if 8 per genotype are
tested and 5% if 4 per genotype are testedt In the
latter case the selection differential will be 2.06
standard deviation as against 1.76 standard deviations
in the former. Consequently,the ratio of progress
made using 4 plants per genotype to that made using
8 per genotype would actually be (1.97 x 2.06):
(2.56 x 1.76) or 4.06:4.15, and advantage of only 2%
for 8 plants per genotype. If the proportion to be
saved were higher it would actually prove advantage—
ous to use ohly 4 plants per genotype, Thus if the
proportion to be saved were 40% and 20% instead of
10% and %, 4 plants per genotype would have a 22%

, advantage in expected progress.
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The estimation of V3, V6, + Vv

V and V0 cannot be estimated separately (except indirectly)
except in plants that can be propogated vegetatively. However, only
in such caSes is it worth much to know anything but their sum, which
can be estimated.

Suppose we have records for n years on each of m cows. An
analysis of variance of the data would be as follows:

an", M.s.' Quantity estimated by M.s.

Years . n — 1
Gows m — l A Vv + n(Vg + V0)
Y x C p (n -1)(m .1) B vV
Total mn -'1

Hence B estimates Vv and (A - B)/n estimates Vg + Vc

Suppose in the case of a plant in which vegetative propagation
can be practiced we made observations in n years on each of m plants of
each of g genotypes. The analyses of variance of the data would be as
follows:

d.f. ' ’ M.S. Quantity estimated by M.S.
Years n - l ‘
Genotypes g - l A Vv + mva + nmv
Plants in Genotypes g(m — l) E g ,gVv+nVc
hue (n-mg-l) c Vv+mva
_Y x P_in Genotypes §(n — 12(m—l) D g
Total gnm 4 l \ V

Hence D estimates Vv, (B~D)/n estimates V6, and (A-C)/nm estimates Vg;

Vag is variance due to age-genotype interaction.

For examples of "repeatability" estimates for characteristics of
animals see references (2) and (5) cited in Section IV. See also re-
ferences (5) and (6) cited below. Stewart estimated "repeatability“
directly from the regression of 2nd record on let since the animals
involved had been selected on the basis of their first records and
hence the technique described above would have given a biased estimate.

‘1
References:

5. Stewart, H. A. The Inheritance of Prolifioacy in Swine.
Jour. An. Sci. &:359 - 366.

6. Jour. Dairy Sci. 25:45 — 56.
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Genotypic variance arising from a single pair of genes.

If the gene pair (A,a) is present in a population three genotypes
(with resPect to the A locus) will appear; AA, As, and as. Their fre-
quencies will be in the ratio qZ: 2q(1 — q):(1 — q)2, Let the average
effect of aa on the organism be 2; that of AA be Cz_+ 2n), and that of
Aa be (ZL+ u + d). Clearly, if‘A is completely dominant, d = u and if
dominance is entirely absent, d = o. d/h can be taken as a measute of
dominance (this scheme for symbolizing the effects of the three geno-
types was taken from Fisher, Immer and Tedin (7)). The situation is
summarized in tabular form below.

Genotype Freguenoy YL' Y X

AA q2 z + 2 u u 2
An 2q(l - a) z + u + d d l
as (l - q) z -u 0

Y is obtained by coding Y1 5 Y = Y1 — (z + n)
X is the number of A’s in the genotype

80'?) ~ (SYWN '
N I“ . - ‘

Note: N(total frequency) 3 1, hence VY : SYZ — (SY)2

qzu‘+ 2q(l f q)d - (1 ~ q)2 u

VY :

.SY
II u(q2 - 1 + 2q ~ q2) + 29(1 . q) d

U (2g — l)u + 2q(l ~ q)d (27)

SY - q2u2 + 2q(l — q)d2 +.(1 — q)2 u2 ”*7"
r "r - r" '2 -

vY - 122133 + (1 ~.q>2 3+ 2q<1 - edz - gag ~1>u + 2cm ._ wolf

= 2q<1 ~ 01) u2 + 2q<1 - q) i1 - 2q(1'- q) 3&2 + 401(1 —~ q)(1 — 2q)ud
”' " (28)

Note: -
(1) When d = o; dominance absent

= ’ - 2VY 2qkl q)u l

VY is a maximum when q = .5

(2) When d 3 u; dominance complete

VY ' 4q(2 — q)(l ~ q)2 U2

VY is a maximum when q 3 .293
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(3) Assuming the same value for u,

VY is 2(2 - q)(l « q) times as great when

d = u as when d = 0.

As q m—wwe 0, 2(2 ~ q)(l - q)~~-~e.4,0

AS q mm_.w§1’ 2(2 ~ q)(l - q)-—~m~~a0.0

(4) Since Y will be essentially uncorrelated with
2 (which is a function of the remainder of the
organisms genotype and of environment) the
total phenotypic variance will be V2 +‘VY .

Let the additive effect of A be defined as the regression of Y1 (or
of Y, which will be equivalent) on X, the number of A's in the
genotype. Remembering (see Section 2) that the regression coefficient
is computed in a manner that minimizes the unexplained portion of the
variance, you will see that by defining the additive effect of A in
this way we are giving it the value which allows the greatest possible
portion of VY to be explained on the basis of additive gene action,
It happens that in pepulation where mating is random, the additive
effect computed according to the above definition is also the response
that would be obtained from substituting A for a, averaged for all
loci in the population where a is present (and hence the substitution
is theoretically possible). Thus,the concept of additive effects
applied in cases where gene action is not of the simple additive type
is not so abstract as it might at first appear.

Covch = st - (SX)(SY) , and

VJC= 8X3 - (SX)2 '(remembering that N 3 1.0)

SOC) = 2q2 + 2cm — q) = 2q

ng= 4q2 + 2q(l ~ q) - 4q2 = 2q(1 . q )
u—‘J

5Gov XY ='2q2u + 2q(l - q)d — Zq {fag - l)u + 2q(1 — q)d‘
{wt .1. 3 ”T. w

= §2q3 «Mega + 2g: u + §2q(l , q) ~ 4q2(1 - qjld
5

V = 2q<1 - «nu + zqo — q><1 - and h

v2q(1’« un +.2q(1 — q)ilfl‘ 2g)? z u + (1 - 2g)d (“9)b : , a.
2q(1 - q)‘YX

Note:
(1) When d a c,laxy(the additive effect of A) = u

This is obVious since considering average
phenotypic values (AA + Aa) : (Aa - aa) : u

(2) When d = u,laXY - 2u(l - q)
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(3) When q = .5, bXY = u regardless of the value of d.
Thus, when.q = .5 the additive effect of A is
always half the difference between the average phenOEypic
values of AA and aa.

The additively_genetic_varianee is the variance associated with the
additive effect of A Which is, from the definition of additive effects,
the portion of the Variance in Y due to regression on X(the number of ‘
A genes in a genotype).

Additively genetic variance
‘ 2 ,z‘ w

= vg = (“W“) _—_ Eqélwq£?s,+ll,r2q>a2 <30)"

a.
2q(l. — q) 3:? + (l - 2a)d_' 2l

As a fnaction of VY it is
t!-

L134" (1 -- Bend} 2
112 +[i _. 2q(1 - 51):? d2 ‘5’ 2(1 w- 2q)ud

Let a = d/n as a measure of degree of dominancee Then d = au and
substituting au for d in the above expression, we obtain

. . «2 2
l f 2(1 l?q)a + (;_ 2g)v a‘ »—,2 x V /V (51)

l+2(1-2q)a+[}v3a(l-*Q)Jd % Y

When some degree of dominance is present (agto) Vg will always.be
smaller than V . The difference is variance caused by dominance
deviations from the additive scheme. (In the case of genotypic
variance arising from two or more gene pairs there may also be vari—
anoe caused by gene interaction deviations).

Variance due to dominance deviations

=Vd=v-vY g
‘ As a fraction of VY it is

Vd/VY '1 l " Va /VY

Note: From Eq. (31)

(1) When a': o (no dominance), ng/VY S leoe

(2) when d = u (complete dominance), Vg /VY ; 2(é : a

The ratio Vg /V is listed below for various values of a and fq
It will be noted that



q

.2, we :9... :9... ~7 We
0.0 1.0 1.0 1.0 1.0 1.0
.2 .99 ,99 ,91 , , .98 .99
0‘; 098 .95 085 .91 094‘.
.6 .97 .91 .77 .79 .81
.8 .96 .87 .71 .65 .53

1.0 .95 .82 .67, .46 .18

dominance deviations are a comparatively minor source of variance
unless a,'the degree of dominance, is above 0.6 and q is 0.5 or
over. With complete dominance and q above 0.7 the proportion of
variance due to dominance deviations becomes large.

FEM /%,Qufl"\ww% ‘\

m-a/QAfi/1 J 6:8 R ' j Mix/1,9,2? J’ LOT—0?. j TeflgKN/JWLWI @3157?» f:

1 9 '2) }. : fiwwfike/W’Q W’Qflxw
’7' Cage/1%kw A

W tile W Qbfimk _,~___ 75%. Q;4117 ”W

Asa/awe; .rt/p L3, ’ I 0 [7 I. I A /a l
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Supplement to VII

A.matter of some significance that should have been clarified in Mimeo-
graph No. 5 is the magnitude of V (additively genetic variance) when a degree
of dominance is present relative to its magnitude when dominance is absentb

Vg = 2q(l ~ q) [u + (1,- 2q)d1‘2 from (50)*
an

Substituting au for d as before aitfih

Vg = 2q(1 - q) {;1 + 2(1 ~ 2q)5 + (1 — 2q)2 a2} u2 (32)

'When a = o
i n 2 ..

Vg = oq(l - Q)u - V? (35)

Let Vé signify the value of Vg when a = 0

Then (assuming u to have the same value in both cases)

vg/Vé 1+M1—mh+(1—mfifi

M 1 + (1 ~ 2q)a §:2 + (1 — 2q)a§ . (34)

Note that this quantity will be greater than 1.0 when q (1.5 but
less than 1.0 when.q 3e.5. Thus when dominance is present but q (2.5
the additively genetic portion of the variance will be greater than
the total variance (which is all additively genetic) when dominance
is absent; however, when q 23,5 the additively genetic variance in
the presence of dominance will be less than if dominance were absent.

Another matter that deserved attention is the formula for Vd'

V="-'d VY Vg

which from eqs. (28) and (52), substituting au for d

3‘

I 'ZQ(1 2- (154351 + 2(1 ~— 2q)a +i:l - 2C1<1 _ (1)3 3.23112

7 - 2q(1 r q)§,l + 2(1 - Eq)a + 11 - gq)2a2§u2

a: azua{I 2q(1 ' a) {1 - 2q(l - q) - (l - 2s)

4q2(1 - q)2a2u2 . e (35)
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Consider the case where q = .5 and a = l (dominance complete). By
g + vd = 3/4 u2

and Vg/VY = 2/3, the value tabulated on page 4 of Mimeograph No. 5.
eq. (32), Vg 2 % ug ggand by eq. (35), Vd = '% u 2. VY = V

I
VIII Selection considered relative to a single gene pair.

In Section IV the'relation between the genotypic su eriority of
selected individuals and their phenotypic superiority (s was defined.
The relationship of their genotypic value to that of their progeny remains
to be clarified.

In a population within which mating among selected individuals is
random the genotypic mean of the pepulation is a function of gene frequency.
Consider again the situation set up in Section VII (using an s d).

'Genotype Frequency Y' _X. X

AA (12 z + Eu . u 2
Aa 2q(l ~ %) z + u + an au 1
aa (1 — q)‘ z -u 0

\ r 7
SY = (2a - 1)u + 2q(1 - QJau = u i<29 ~ 1) + 2q(1 - q)ai (56)3..-

and since N(total frequency) = 1.0 this is also the value of §}
Consequently the difference in gene frequency between selected individuals
and the pOpulation from which they Were selected is the key to the geno—
typio superiority of their offspring. this difference can be estimated
through use of the regression of X and Y.

b : Gov XY
XY VY

As X goes from zero to 2.0, q goes from zero to 1.0, hence

b COV XY
ZVY

The change in genotypic mean per unit change in q is (for an infinitesimal
change in q) the derivative of Y with respect to q. ”

qY = bXY /2 Z (57)

Y = u qu - 1) + 2q<1 ~ q)a]

it '~ ~
35” = Zuiwl + (l - 2q)a} (38)
q ._dY

Note: The expression '5’” is read, the change in.§ per unit change
in q. It is called the q derivative of qY with respect to q.

Now consider the effect of selection on genotypic value of offspring in
three steps.
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(1) For every unit of phenotypic superiority of selected parents
they are superior genotypically by bgp units. "

(2) For every unit of genotypic superiority of selected parents
the average gene frequency is bq units above the average
frequency for the population from‘which’the parents were
selected. ‘ ’

(3) The genotypic mean of thewoffspring of selected parents in~
Greases at the rate Of dY Per unit change in q as gene
frequency increases. dq /

Therefore the regression of genotypic mean of offspring on phenotype of
patents is ‘

d"?b b ”an.EP qg dq

- VY Cov XY 2“ [1 + (1 mm?
VP ZVY

Cov XY P: «fig—.... . u L} + (1 - Zq)a3

Taking value of Gov XY from Section.VII and substituting au for d, this
becomes '

2cm - q) 1125;. + <1 - zeal?

VP

Referring to eq. (32} we see that this is equal to V /V . Therefore,
genetic advance (resulting from change in frefiuenoy of the A gene)
of the progeny of selected parents over the average genotypio value
expected in the absence of selection is

s V ‘ I
g/Vp (59)

where s is the selection differential (the average phenotypic superiority
of selected parents, V is the additively genetic portion of the geno~
typic variance arising from segregation at the A locus, and VP is the
total phenotypic variance.

Since 3 for a given proportion of individuals selected is prepor-
tional to XgV

s = 9-"'kfiép



and (39) becomes

k “{V V : '

Attention to the effects of dominance on the size of V and V

will bring out that when q is less than .5 genetic advance 3 will p
frequently be greater if dominance is present then if it were not (this
assumes u to have the same value in either case)» HOW'much q must be
bGlOW'oB to make this true depends on the relative magnitudes of gene»
typic and environmental variance. 'When q is greater than 95 genetic
advance will alweys be less when dominance is present than it Wtuld be

if dominance were not present.



hr-
#331“:

rid"'1:
$3
firm‘i ,'35?! Emw: '

y-

.8
:g

mab'fit

5&3

rM$8031

.3.
waxed

I V‘3$
B»
a, .935 ,

£1311

.,

’iJ

53:!

if

'tmew am

fl\ <23
km
a1,.wI.

fifiwla Iffiw

5:? an;"’r‘H

'3361 ad
ifigvziflfihamfla

«a

{I
{if ,,
gi it;

;m M33333” ’
£33333 57‘ 3333733333153 mt. 59‘

' £123

ma: dwaauq :33: ’~

.333; $9 333«v.9.

5:

3 fiafig

1:33:33! 3



IX.

Statistical Concepts in Genetics
Mimeograph No. 7

Deviations from the additive scheme caused by gene interactions.

Deviations caused by gene interactions are referred to by‘Wright and
Lush as epistatio deviations from.the additive scheme or simply as epistatio
deviations. The computation of generalized formulae for variance rEEET53‘
ing from epistatic deviations and its magnitude relative to additively
genetic variance is very tedious. As an alternative we will study two
or three specific cases.

Case 1 - Consider the type of interaction referred to ordinarily as com—
iflifififitary gene action. Genes A and B have no effect by themselves but
when both are present either in simplex or duplex an "effect" is observed.
Let the "effect" be guantitized as 2 y. Then the situation will be as
below.

Genotype Frequency Y' ‘ Y Xa . Ab

- 2 2 “"—" —-“— ‘
AABB qa q b 2 + 2y 2y 2 2

AABb inqb(l—qb) z + 2y 2y 2 l

AAbb q§(1—qb)2 z o 2' o

AaBB 2qa(l-qa)q% z + 2y 2y 1 2

AaBb 2qa(l-qa)2qb(l~qb) z + 2y 2y 1 1

Aabb an(l~qa)(l—qb)2 z o 1 o

aaBB (1—qa)2qb2 z 0 O 2

aaBb (l-qa)22qb(l—qb) z 0 O l

aabb . (l~qa)2(l—qb)2 z a O O O

2 2 2 ~ 2 .‘
BY 2 anqby + éqaqb(l~qb)y + 4qa(1-qa)qby + Bqaqb(l-qa)(l-qb)y

.= anqbiqaqb+ an(l-qb) + qu(l-qa) + 4(1~qa)(l~qb)j y

: anqb(2-qa)(2~qb)y (40)

2 2 2 2 2 2 V 2 2 a 2
SY = dqaqby + Bqaqb(l—qb)y + Bqagl-qa)qby + lsqa(1'qa)Qb(l‘Qb)y

= 4qaqblgaqb + an(l-qb) + qu(1-qa) + 4(1-qa)(1—qb)j y2

= 4qaqMZ-qaflz—quz
2

VY-= 4qaqb(2-qa)(2~qb)y2 - 4q§q%(2-qa)2(2-qb) Y2

= 4qaqb(2-qa)(2-qb) [l-qaqb(2-qa)(2-qb)] ya (41)
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Note that qaqb(2-qa)(é~qb) = the frequency of genotypes containing
at least one A and on; B gene. The Variance will be a maximum'When
half the genotypes heYe the value, By, and half the value, zero,
Hence VY'will be a mefimum when qeqb(2“qa)(2'qb) 2 1/2.

The average values f5§ genotypes AA, An, and an will be as follows;
‘2 z «

YAA = 2y§gb + quclfiqb)j = qu(2~qb)y

YAa = 2y[g§ + quCfi-qb)j = qu(2*qb)y

Year-O

In corresponding fashion

HYBB 2Qa(2'Qa)y

an(2*qa)yflYBb

Note that in the case of'A the dominanoe\deviatidn, d‘: u : qb(2-qb)y
and in the case of the B gene, d :»u = qh(2~qa)y, When d :—u,‘Vg for a
single gene pair is frmn eq. (30)

5 2
8q(l*q) u

Hence V resulting fromxthe A, a pair will be
3 2 2 2

8qa(1~qa) qb(2*qb) y

and Vg resulting from the B,b pair will be

8qb(l~qb)5q§(2-qa)2yz

Again when d z u, Vd for a single gene pair is from eq. (35)

2 1 *
4q2(1-Q) u?

and Vd resulting from the A, a pair will be
24qa(l-qa)2q§(2-qb)zy2

and from the B, b pair will be
2 ' 24qb(1~qb)2q§(2-qa) y2

The variance from epistatic deviations is the total VY minus the sum
of the four portions giVen above. This becomes

- " 2
4qaqb<z~qa)(2—qb) [;*qb<2~qb) <1—qa>3-qa(2-qa>j y

Note that this expression becomes zero when either qa or qbbeoanes
either zero or 1‘0. Values of Vg, Vd and V8 are listed on the next page
for Various values of qa and qb. ’
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qa

ll. :2. $2” £1. 2%.

7y .159 .550 .489 .572 .511

7g .042 .181 .547 .488 .572

Vd .002 .015 .027 .055 .055
vi .095 .154 .115 .050 .005

vY .550 .770 .945 .995 1.000

7g .182 .428 .595 .721 .809

7d .014 .092 .154 .192 .181

V1 .154 .250 .187 .082 .010

VY .489 .945 .98 .887 .755
7g .545 .595 .55 .499 .494
Va .027 .184 .28 .505 .285

Vi .115 .187 .14 .081 .007

VY .572 .995 .857 .559 .557

g .488 .721 .499 .250 .154

vd .055 .192 .508 .292 .200

V1 .050 .082 .051 .027 .005

VY .511 1.000 .785 .557 .0780

vg .572 .809 .494 .154 .0142

.055 .181 .255 .200 .0858

i ‘.005 .010 .007 .005 .0004
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From Section VII note that when a 2: u, Cov xy = 4q(l—q)2u (42)

Hence
i. 3 _,00v XaY — 4qa(1-qa) qb(2 ab)y (43)

since u = qb(2-qb)y and since the variation in Y arising from.segregation

at the B locus and from the joint effect of A and B is uncorrelated with
Xa and therefore does not contribute to the covariance of X5 and Y.

GOV XaY d b CEEOV )[QY
13an x WVY an an 2':WY

Taking the partial derivative of § with respect to qa

ii
a
= 2y l2qb(2—qb>(1vqa)§

The thange in § that would result if selection acted on 9a and not qb

would be expressed by the regression of i on phenotypie superiority of
selected parents. ‘

aqa(1-qa)5q%(2-qb)2y2
vp .

I!

Note that the numerator is the additively genetic variance arising from
segregation at the A locus.

In an analogous fashion it can be shown that if selection acted only on
qb the regression of offsprings genotype on phenotypic superiority of
parents-Would he

3 2 2 2
8qb(1-qb) qa(2~qa) y

VP
erthe ratio of additivoly genetic variance associated with the B,b pair to
the total phenotypic variance, If there were no gene interaction the re"
gression of genotype of offspring on phenotype of parent would be the sum
of the regressions §or the separate gene pairs. However, examination of
the expression for Y, eq. (i0), reveals that when qa and q are increased
simultaneously'? increases somewhat more than the sum of t e increases
that would occur (1) if qa were increased while qt remained constant, and
(2) if qb increased while q remained constant. This means that the re-
gression of offsprings gene ype on parents phenotype is a little greater
than the proportion of the total phenotypic variance which is additively
genetic. ‘Wright (8) has shown that it will be larger by onenhalf the
fraction of total phonotypic variance which arises from epistatie devia»
tions.

In an interaction system of the type under discussion the gene frequency
will tend to remain equal for the two pairs of genes. This is apparent
from the fact that selection causes the greatest increase in q for the
gene pair for which q is lowest at the time. The regression of qa on
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phenotype is prbq Y and the change in qa with a given amount of selection
is a

\. __,. £""‘~"" ,. ‘ Y
L’qa .. SprbQ‘aY : kni VP VY . 00‘ X31 : lflcczv XELY

2V ,?7"P Y 2qu

where k 2 selection differential in standard deviations.' In like manner
k Cev X Y

[Enq‘b 7" 2 "MWbV
4 P

. Cov X Y
Abqb ‘Cov KEY (44)

2
4QQ(1-qa)2qb(2~qb)y (l'qa) (z'qb)

u

(Gov X Y is given in eq. (45) and Gov KEY is easily obtained from
eq. (32) and the value of u for the B, b gene pair).

» (1— 2(2v
{Egan : —~—333§——~321 is always greater than one when qa4;q and
43gb (l'qb) (Z-qa) less than one when qbgqa frdm Which it is

apparent that selection will tend to keep
qa and qb equal.

Case 2. - Consider two gene pairs with equal and additive effects on a
character that is at its optimum when two plus genes are present regardless
of the locus at which they are preSent, Either one or three plus genes
would be less desirable than two and none or four still less desirablei
The situation might then be as below.

Genotype Frequency Y X5 Xb

AABB ngfi ‘0 2 2

AABb Zqiqb(l~qb) . y 2 .1

AAbb q:(1»qb)2 ‘ 2y~ 2~ , e

.AeBB 2qa(lnqa)q% y' 1 a 2

Aafib 4qaqb(1eqa)(l~qb} 2y l l

Aabb an<l—qa) (lwqb)2 'y l O

aeBB (1~q&)2q% 2y ' 0 2

aaBb 2(1~qa)2qbcl~qb) y 0 1

eabb (l-qa)2(l~qb)2 O C O



. 6 « Mimeograpfl No, 7

For the A, a air : 2 2
anqb(l—qb)y + aqa(1~qb) y3 ‘ x 9 Am "YAA (12 , (1 3b).!

a

Y 2 (l+9q ‘ Zqz)yAg; “" b b

Yae z quy
2(l~qb)y ” quy

2
2(1—qb)x + Baby

2d = (1 +2qb* 23:)y -

H qu< 1~qb)y

For the B,b pair

3 8.2u (1 qa)y

d = an(1*qa)y

As before (see eq. 44)

qua * Cov XaY
Aqb Cov XbY

Zq (lmqn)(lfizq~) + 2 q (1~q )(l~q1)(l*2qn)
which in fihis case is a “ o, qa b a 3 . “ ~_~s_-_

Eqb(l~qb)(1"2qa) + Bqaqb(l~qa)(lmqb)(1«2qb)

(from the general formula for Gov XY, section VII and the values of u
and d listed above)

Two things should be reced.1rom the expression for the ratioz %/qw.

1? When q z qk 2 .5 both numerator and denemfinehor 333 z=xe
This means fiteb :3eleetion hes no to:denoy +0 change,C'i.ther
qa GT 9b i 0.9 the svseem is fin equziHibriun vaever, itUIis on ua.,aowo on'.'iLrium as wilt be shown.

2» “Whenever Q3 is larger than qbfidsqm is 15 ggr +ha9:30,, Both
may be negative bu? if qv> qbafi-qaw1ll be the 5mmM.cv negst ive
value 30in nerg3r in the anehraze sense. Tnis moans Chi?
exoepf when qfi = q seleetion will send to i.neremsc +he difn
Ie:*eneo in $05.3 frequency bo+ween the two gene pairs Ultim
mathV tllfis woald Jrsnd to bring oro q Value to J,O the other
to ZOlCn
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When qa 2 qb, both will tend toward .5 at the same rate, When qa : q 2 n5
no further permanent change in the population mean will result from selectieng
though genotypic variance will be presents unless the equilibrium.(which is
unstable) is disturbed. This can best be accomplished by a generation 0?
close inbreeding during which there is a good chance of throwing q and q
out of equalitya If this is done selection in succeeding outbreeding v-..ril..~
increase the larger of the two, decrease the smaller and thereby increase
the population mean and decrease gonotypio variance by bringing the gene»
typic value of the Whole population to the level of the best obtained n.en

qa and qb were equal to 05.

While the situation studied above is empirical and of extreme simplicity
it brings out some important things about characters for which selection is
for an optimum rather than an extreme, A typical example is body conformaw
tion which in certain meat animals is of considerable economic importance:
Type has received more attention in selection than any other trait yet
variation around optimum.type in herds vdnrc strict selection is practiced
is extreme. It seems likely that type variation could be reduced without
permanent increase in inbreeding by alternating inbreeding with outbreoding
between inbred animals.

Summary

Variance due to epistatic deviations may be a very small portion of total
genotypic variance even though definite gene interactions are present0 This
is exemplified in Case 1. In such cases mass selection may be highly effective
in outbred populations.

At the other extreme are types of interaction such as Case 2 where the
additively genetic portion of the variance may be close to zero and conse~
quently mass selection will be ineffective. In such cases a generation of
close inbreeding may upset the equilibrium and lead to a situation where
mass selection mill again be effectivea

In complex characters such as yield the effects of primary characters
may combine by multiplication to produce the trait in questionh In this
type of nonwadditive action of nonmalleles the portion of the genotypic
variance due to epistatio deviations will be of tee order observed in Cesc .,i.
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X. Selection and gene frequency.

Formulae worth fixing in mind and which will be used in this sec~
tion are the following:

1. Additively genetic variénce

Vg : 2q(l-q) [i 4“(1 ~2q)§i u

2. Variance due to dominance deviations

Va : 4q2(1~q)2a2u2

3. Total genotypic variance
HVY : 2q(1~q) Fl +‘2Cle2q)a~+-(l—2ch2q 2)aélu2

LGWH=2%HDDMLM§u

ngvd

The change in gene frequency resulting from selection based on
phenotype will be the product of the selection differential and the
regression coefficient of gene frequency on phenotype,

3 : Sb

In accordance with the argument of Section 8

bqp 3 pr bqY

But pr : Vy'/Vp (see Section IV)

- Gov X1and bqY -1 EVE-e (eq. 37) »

Hen°e b a 3;” , Gov z; = ’cOv XY
qp VP 2vY 2vp ’1

(45)

(46)

The selection differential, s, is understood to be measured in the units
by which phenotype is measured. Obviously we can write

8 = k‘Q VP

where k is the selection differential in standard units.

(47)



Now substituting in eq. (45)

A q 7.: k Wp GOV ¥Y Pk . GOV XY (1MB)

2V1) ‘2 4 VP

In order to make use of eq; (48) for prediction of 43 q, change
in q resulting from selection, assumptions must be made (1) about
the magnitude of additively genetic variance relative to total phenom
typic variance, and (2) about tfie number of segregating genes affect«
ing the trait for which selectiofi is to be practiced. Assume n gene
pairs each responsible for an eqnal amount of additively genetic vari—
ance, V . The total additively genetic variance arising from the n
pairs W111 then be n Vgu E

l_ m vLet an .. t p

Then V : ntVp g

Substituting in eq. (1.8) we have

k ‘ Gov
¢\‘. n g

I

k , aqua) [.1 + (1:. 928.1 1.1_ L
2 fit ’\]2q(l—£13 [1+(1~2CI)81j2 ‘u2

N

N 21““? \j'équ-q) (49)

Values of A q for t 3 4, is. Vg : Vp/A, and. varying values of

.q and n are given below. All values listeci for AC1 are in k units.
Thus for q E .7, t: A, and n = 20;



..3..

q

.3. sl_" all i2. &Z~ £2-
1 .105, .160 .175 .160 .105
2 .075. .115 .125 .115 .075
3 .060 .095 .010 .095 .060
5 .045 .070 .080 .070 .045

10 .035 .050 .055 .050 .035
20 .025 .035 .040 .035 .025
50 .015 .020 ' .025 .020 .015

100 .010 .015 .020 .015 .010

seq will be .0335 on the average if k - 1.0, i.e. if the selection
differential amounts to one phenotypic standard deviation.

The assumetion that the n genes contribute equal amounts of
additively genetic variance is an artificial one only if the n
values 0f q areialso assumed equal.as they would be, for example, in
the F1 and leof.a cross 0f pure lines. Starting with such material
the frequency sf genes contributing the greatest amount of additively
genetic variance (those for which £l~+(lu2q)a] u was largest) would
respond more rapidly to selection pressure. 'As q changed from one-
half, the termi2q(l-q) in the formula for V would decrease more
rapidly in the variance of genes for which ‘ q changed most rapidly.
The result would be an approach to a moving equilibrium (moving so
long as selection pressure continued and was effective) at values of
q for the various genes which would make Vg equal for all.

It is of some interest to examine eQ-(A9) for certain special
cases. Consider a trait conditioned by the action of one gene pair,
not affected by environment, and for which dominance is not involved.
The mean will be

p
(Zq—l)u +u + z : 2qu + z

(Obtained from eq. (27) adding u 4- z, the amounts subtracted
when original phenotypic values were coded.)

The genotypic variance will be 2q(l--q)u2 and this is alsOathe pheno~
typic variance since there is no effect of environment. The best indi—
viduals will have the phenotype ,

‘ '2u er 2’

and consequently the greatest possible selection differential will be

2n —+ z - 2qu m z = 2n ~ 2qu : 2(l-q)u



and the value of k will be

k = .3... :; Ali—9111.... 2.2m...
«Ff; '\‘2q(l~q)u2 «Iun-Fq)

Substituting in eq. (49)

W o %(«3C1 : ‘ "\J 2q(1"Q) 2'.
24nt42q31~cfl 4‘ nt ,

But n : 1 since there is only one gene pair and t 2 1 since VP : Vp
(no environmental variance); hence \lnt : 1, and 3

43 q I l-q

Thus q changes from q to

Q+4q 3 q ~1~l~q = 1.0

The result is obvious since choice of only AA individuals automatically
makes q equal to one; however, such simple checks on formulae help one
to become acquainted with them.

As another example consider selection for a trait controlled by
one gene pair for which dominance is complete (a : l, d : u) and un—
affected by environment. Assume q z .5. From eq. (27) the mean will be

(2q—l)u + 2q(l-q)d + u +z

Bra-1 1* 2q(1—q) + 3:! u 4» 2 (d = u)

: (4q~2q2)u + 2

N 3/2 11+ 2 (q = .5)

Thrcoafourths of the individuals will have the genotypic value 2u«r z
and of these 2/3 will be An and 1/3 AA. Hence selection of the best
individuals will result in q becoming 2/3 end.¢xq will have been 1/6.
The selection differential, s, will have been 1/2 u. Since there is
no effect of environment. ’



Vp ~Vy- A

2V : 1 dg e-u an

t 3 V V 3 l.
p/ g 5

28" l' V I H i
5/“ p 1 2 Bu 2 ’\ 3

ézigai:ab sliZé." nd7£25 2 1/6
2417.5(SQ. 3 . ’

as observed above.

It will be noted that¢s qfidepends on the proportion of phenotypic

variance which is additively geietic, the number of genes affecting the

trait, and the size of k. Large numbers of genes involved, response

of phenotype to environment, and small selection differentials (measured

in standard deviations, k values) all reduce the change in gene frequency

effected by selection. It is easy to see that in many instances selection

may result in only very small changes in gene frequency; but ii‘gene

number is large, may at the same time result in coneidernble increase in

the population mean.

Attention should be drawn to the fact thet when selection is being

presticed for more than one treit, the k values for cny one trait must

necessarily be reduced. If the traits are considered of equal importance

the reduction will be between l/N end l/Affi depending on how individuals

‘to be selected are decided upon. This point will be returned to in '

connection with selection indices.

The comgosition of senotxgic variance w§en.gf> l (sugor¢domin§ncez and

the effect on dfi;g under mess selection; ,

Values of VE , Vd , and VY are listed below for q ::.5, .6, and .7

and for values of e in the interval 0 - 3.0. All variances are in terms of‘

the unit 11 .
a



q a V Vd VY

.5 0 .5 0 .5
.5 .5 .063 .563

1.0 .5 .250 .750
1.5 .5 .563 1.063
2.0 .5 ‘1.000 1.500
2.5 .5 1.563 2.063
3.0 .5 2.250 2.750

.6 0 .48 0 .48
.5 .39 .06 .45

1.0 .31 .23 .54
1.5 .24 .52 .76
2,0 .17 .92 1.09
2.5 .12 1.44 1.56
3.0 .08 2.07 2.15

.7 0 .42 .00 .42
.5 .27 .04 .31

1.0 .15 .17 .32
1.5 .07 .40 .47
2.0 .02 .70 .v2
2.5 .00 1.10 1.30
3.0 .02 1.58 1.60

Note that strong super—dominance results in dflditively genetic
variance becoming a relatively small portion of total genotypic
variance. This obviously means mess selection in random bred popu-
letions is reletively ineffective in the presence of super—dominance.

Now note that where q is .7 and e : 2.5 there is no ndditively
genetic variance (Vg :0). You can easily Show that for e 2 2.5 and
q z '89 V 2 ~O8u . However, at that value of q, Gov XY is a minus
quantity, - .16u. This means that when a‘: 2,5, muss selection will
reduce q when it is over .7 and increase q when it is less than .7.
In general, in the presence of superedominnnce (e.3>140) mass selection
will bring q to an equilibrium value rather than to one. This equi~_
librium value will be the value of q for which the population mean, Y,
is a maximum. .

Now if the equation for Y is differentiated with resnect to q,
we obtain the rate at which Y changes as q changes. Obviously, at the
point where Y ceases to increase with increasing q and starts to de—
crease, Y is it a maximum. Hence if we form the derivative (by differ»
entietion) of Y, set it equal to zero, and solve for q, we obtain the
value of q for which Y is a maximum which is the equilibrium'velue of
q approached under mess selection.



-7...

+41 M (2q~l)u '+- 2q(l—q)d (eq.27)

= (2q-l)u + ‘2q(l-q')au

I u(2qu‘#2qa~2q2a)

dY 3 u(27+2a-4qa)

u( 2+2a*4q3) ‘l 0

g 1 2a_q -£aH

Equilibrium values of q are listed below for'various values of a.

“k” mun-£0“ -

1‘0172’)I ‘ K...o‘lfl’C)
3 O
l 5
20 .!,r
2.5 .700
3 O .667
3 5 06/?
A O m ~5 6L. I}

7 .‘ . m v.12...‘ ,. ' = :-+ 1 ‘ .- ; . .- ‘M M _ -rl .\ _ ,5:
As 2 increases vnuuuub iamgq [no EQUL1Lb? La dwlww u» q nguuanhes g,
as a limit.

This matter will be returnefi to in connecchn with methods for

detecting superwdomihaLca.
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XI. The Path Coefficient

In 1921 Sewall wright (8) described a method for studying the interrelations
of correlated variables. The important feature of the method was the use of a
priori knowledge concerning cause and effect relationships among the variables
concerned. In the article referred to he introduced a statistic which he termed
the path coefficient. Actually the path coefficient is a standard partial rev
gression coefficient but specifically the standard partial regression coefficient
of a dependent variable on an independent variable and only to be used in that
sense since certain of its useful attributes are thereon dependent. A valuable
aspect of the path coefficient method as presented by'Wright is the graphic pre—
sentation of syStems of interrelated variables. While it is not a fundamental
addition, it aids in clear visualization of what can be very complex situations.

The path coefficient has been used very little in fields other than genetics
and even in genetics is not an indispensable tool. However, the conditions
necessary for its application are very often met in genetical problems since in
many cases there is no uncertainty regarding what is cause and what is effect,

Wright used the path coefficient to obtain a general solution to the once
perplexing problem of the effect of inbreeding on homozygosis. It is worth
understanding path coefficients if for no other reason than to be able to read
with understanding his writings (9,10) on that subject.

The path coefficient is defined as the ratio of the standard deviation of a
dependent variable when all independent variables (which exert effects on it)
are held constant except the one in question, the variability of which is kept
unchanged, to the total standard deviation of the dependent variable. It is
understood that the designation of a variable as "dependent" must not be empiri—
cal but must rest on known cause and effect relationships of the variables in
question. Symbolically,V ._.....

ex A = gi- (50)
o VX

where p is the path coefficient of X on A, x-§7w;he standard deviation of X
_fl§.A X

andeX.A the standard deviation of X resulting solely from variation in A-, The

symbol dX.A specifies the proportion of the variance (squared standard deviation)

of X due solely to variance in A. 3
.V.

2._. z lad...- 51

'Wright calls dv A the coefficient of determination.
A.

The important attributes of the path coefficient and the coefficient of
determination are best made clear by consideration of a series of situations
graded with respect to complexity. Consider first a variable X which is the
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simple sum of two other variables A and B, e.g. the number of dominant genes
in a zygote as a function of the number in the two gametes that combined to
form it. The situation is presented graphically in Figure 1. Cause and effect
paths of relationship are indicated by a single headed arrow pointing from the
causative factor to the factor affected. Thus an arrow
points from A,to X. Correlations not stemming from a “1
cause and effect relationship are indicated by a double" fi ,/ ”It i
headed (nonndireetienal) arrow as in the case of the p,/// '3 a
correlation between A and B. The notation is lightened V g 3” '
by use of small case letters to designate path coeffiw *» ‘i\ b / wD '
cients. From.tho position of the letter, "a" in the 1 “‘~\_ 1' 3
figure it is understood that "a" will be used instead \‘3 1
of p . ‘ ‘

X.a Figure . !M—ud-v—— M... . ..._.. _. nu...
Since X t A + B

V}: 2: VA. + VB 4' 2 Tab/{VA VB (see eq‘ 11) (52)

It is obvious that if B were held constant without altering variation in A,
VX would then be equal to V , hence by the definition of the path coefficient

-.-.4.. .. gin-fi-m
’1 z FLA = “WA/WK

b = PX.B = WW;

a2: dLA = vA/vX and

b2: dLB = vB/vX

Dividing eq. 52 by Vi we obtain

V V V / n”
V32 : 1 :2 “A..— + .—-—B— .1. 2r bq..L-B-——
X VX VX 5* vX »

The last term of the above equation is called the coefficient of joint determi-
nation and is symbolized by d ~—-. It is twice the product of the correlation
between the two independent ’ . variables involved and the two path coeffi-
cients. u—‘u

V VA B =
VX

Zrab (55)

Note that the sum of the two coefficients of direct determination and the coeffi-
cient of joint determination is one. Note also that When rab = O, pX A = r
and p = r, . When r = O, Cov AK = V and V . XA

XoB XyB ab A I‘ __ A __ \l'vm/Wm
‘ M .... W .__a A l\ X

“WA VX

: p (54:)X.A
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Case 2 - Let X be the following function of A,B, and o.

X = uh + rB ='wC

where u, v, and w are constants.
, F" '“"“"""'”"“_”“”

Figure 2 depicts the relationships among the variables‘ 5 g
l ; JEL i

__ .. I w an, 1 \2 :l\ (L), /‘ 2‘; "r.

VX " SW“ ”-0 + “Ox/J ‘ / ix .
v ! ar/ 1“ s g

2 a 2 3J*“““' 6y 4iwiwwog ,
= 11 V a, + v ‘27 + w v 4... 2-: u-‘sr-‘v V «r , , x , : z

-# B C ab 4 3 A B i see n i / ‘
, “5\. l; ‘

.w, w... 0...- \. ‘~ ‘
,1 w : 7*””W’”‘ \ ‘

+ 2r uwo V \ J‘DT va;v v.“ t
ac M A C r u be ‘N B C ‘ i

i I Figure P 3

Again if B and C were held constant without altering variation in A; UV would be
equal to u V . Therefore

.1).
A

a : u“J§;2Q§;— and a2 : dX.A : usz//Vx

In like manner
.~«~ ,unu' 2

b :: v1\‘VB/,\!VX, b2 = d}: B = v vB/vX

c :: W,\Wéfl\{~v%- ’ and (32 :: dx‘n : ZVC/VX
\J

The coefficient of joint_dgtermination byoA and B,
uvrQV V- Bd = 2 ——-~1 : 2r

X013 ab VX ab pX-prXoB

In like fashion

d = Zr and
me ach.ApX.C ’

diet? 2 zrbcpxtpxm '

Note again that dividing the equation for V1 through by Vv,wc have the sum of
the coefficients of direct determination plfis the sum of the coefficients of
joint determination equal to one. This can be shown true for any system in
which all courses of variation in a dependent variable are taken into account.
written in general form :

Z d _+ Ed _.__', = l (55)
X.1 X.1J

i 2t +22r....=1 56or 931.5. 1313193 ( )
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Case 3 - Consider a situation such as that depicted in figure 3 in which there
is a chain of cause and effect relationships.

Let X = uA + nM
an d M = vB +-wC

If A remained constant without changing the l
v i of a A Ear ance M, VX would be equal to n VM , /fi>/’///
Hence, ' ;/~ 9

.....1. “m...“ V l W: m , 'b B ’z , l x WM in...“ .m I). \1 VM /l\l VX .
‘s\ e ,1

In like fashion, ;
Figure 3 i

‘ Eb = qu‘g/va‘fl

Now if and C were both censtant with no change in variance of B, VM would
equal v VB and VX‘would equal n v VB. Hence “

nvA‘ VB A] VX

4V}: "\iVM

ll
page o

This reasoning can easily be extended to show that for chains of events (regard—
less of the number of events involved) the path coefficient from the first to
the last event is the product of all the path coefficients between adjacent
events. Thus for the situation depicted in figure 4.

= abcd and P z , '
pXoD A00 be X éfia‘ A z b B 3‘ C I” / dN ‘I... T .4 \IX

Figure 4

One of the most useful attributes of path coefficients is that the correla-
tion between two variables can be expressed as»a function of the path coeffi-
cients connecting causative factors to the variables in question and the
correlation coefficients among those causative factors. Consider the situation
depicted in figure 5. Suppose

X = uA + VB, and ‘d
a * 1‘

Y = 213 + we. 1/,/ f

X \<\ b
S(uA + vBleB + WC) \“B rac

I‘ z: W"r “MW m“ ‘
“ rQ 3x2 . 5Y2 /, b:

Expanding the numerator we have “‘r~

(quAB + uwSAC + vaBC + vszZ)//\isxz. 8Y2 Figure 5
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Dividing numerator and denominator by N this becmnos

'uz-Cov AB + uw Gov A0 + vw Gov BC + vz VB ‘5?

Riv}: VY ‘ AFT}: VY {\i VX VY IQ VX V, r

Examination of figure 5 will show there are four connecting paths from X to Y
which do not involve more than one correlation coefficient each. It will be
shown that if the coefficients aloflé'oaeh of these paths are multiplied to~
gother the sum of the four products obtained is the correlation coefficient
between X and Y. The four paths are as follows:

1. x, A, ‘B, Y
2. K, A, c, Y
3. X, B, C, Y
4. X, B, Y

For the first the product of coefficients is ab’rab

a 7- u/Q‘lfz /!‘\lVX—
.m ~~u~

b t z} VB / xxj VYH

rah Hoov AB /.\1vA VB

uz Cov AB
and abirab = which is the first erm.in the equation for the

idfiv V, correlation of X and Y. In like manner it is
A Y easily shown that the products of coefficients

for paths 2, 3, and 4 are equal to the other'
three terms of the equation for rW as follows:

uw Gov ACkc i:a rao _«.mw-.QVX vi

vw Gov BC
be flvrv

‘ X Y

bb! = 33.13..“
QVXVY

The proof can be extended to show that the correlation of two variables is
always the sum of the products of coefficients for the various paths connect”
ing the variables in question. There are two simple rules to remember in
application of this fact.

1. No path may include more than one correlation coefficient.
Thus, K,A,B,C,Y is not a path contributing to rVY in the
above example. A



~ 6 ~ Mimeograph No. 9

2. Avoid duplicating a path, Suppose in the example
A a variable D had been a factor influencing both A

and B. The paths X, A,B,_Y and X,A,D,B.Y would
then have been duplicates. This will be avoided
if no two paths are allowed to include a common
pair of variables (those being correlated excluded).

The applications of path coefficients in genetics revolve around their
use in synthesizing correlation coefficients; It should be noted that in
all proofs given above all interrelations Were linear and additive. These
assumptions will be seen to hold in the instances where the method is to
be applied. For more extensive proofs see wright15 publication cited below.

ReferencesW‘
8. wright, Sowall (1921) Correlation and Causation. Jour. Agr. Ros.

20:55?
9. 'Wright, Sewall (1921} Systems of Mating, I-V Gen. 6:111—178.

10. 'Wright, Sewall (1922) Coefficients of Inbreeding and Relationship.
Amer. Nat. 56:330—358.



Statistical Concepts in Genetics

Nimeograph No. 10

XII. The coefficient of inbreeding}

Mating between related inditiduals is called inbreeding. It is
well known that inbreeding reduces heterozygosity. This obviously
means that when inbreeding is practiced uniting gametes tend to be
more similar in composition than would gametes of the entire popule—.
tion paired at random, i.e. that there is a éegree of correlation be-
tween uniting gametes. The first step in the derivation of the corre-
lation coefficient (originally derived by Wright (10)) will be to
demonstrate that then inbreeding is practiced in the absence of sel-
ection the correlation between the numbers of one of a pair of alle~
morphic genes in uniting remotes is equal to the proportion by which
heterozygosity has been decreased by the syStem of breeding that has
been followed. Consider the following situation.

Genotype of gametes

Eeeels. Eels W6M .3. .1.

A A q2«+ L l l

i A a q(1nq)~l l O

a A q(1-q)-L 0 l

a a (1-4;)2 +' L O O

X is the number of A genes in the female gamete and Y the number in
the male gamete. 2L is the decrease in heterozygous fertilizations
from that which occurs in random mating. ‘

2g of the A genes are involved, q from each sex. In random
mating 2q2 go into homozygous and 2q(l-q) into heterozygous fertili~
zations ' w

2 2
203+ 2q(l—q) :: 2C1 +2q—2q :: 2Q

”hen inbreeding is practiced, the number involved in heterozygous
fertilizetions is reduced. Since all A genes not involved in hetero-
zygous fertilizetions must enter into homozygous unions the fre-
quency of the latter type is easily computed to be

2 - 9 ”"2 z 22 (1+1!
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In like anner, it ie easily shown that the frequency of ea unions
is (1~q) + L which makes the total frequency one as it must be.

3X: [512+L+q(1-.-q) Ha]: q

Vx [012+ L+ <3(l—q) - L} q 2

-— (q—q‘?) :.- q(l-q)

H

Obviously

SY :: q , and

VI :- 01(1-(1)

since the X and Y distributions are identical.

Gov KY 2' ((1314).. 92 : L

r : L ‘ L

H 439(1’Q) " (3(1un q<1..-q)
a.P

The percent heterozyhosity under random mating was

P =-" 2q(1-q)

Hence

r ;: L 3 2LXY $75“ "'5‘“

and the correlation of uniting gametes is obviously the percent de-.
crease in heterozygosis since 2L is the decrease in heterozygcsis and
P is the heterozygosis originally presente

The next step is to show that the correlation can be out into a
form Prom which it can be conviently computed from pedigree informs-
tion. Figure 1 depicts the reletionshios among

1. A zygote
2. The gametes that combined to form it
3. The genotypes of sire an“! am.

5v

S »~E~we G \\i

I
m If 3 Figure l.

\ ax/q
b 1””D MM») G2
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a is the path coefficient from
gamete to zygote.

b is the path coefficient from
genotype to gamete formed
from it.

f : rXY , the correlation between
uniting gametes (the

coefficient of inbreeding),
and m is the correlation between genotypes of'sireanfl dam. Com-
puting f according to the principal developed in the foregoinc section

f .: bzm , ‘ I (57)

From eq. 56 of the foregoing section

1 ;: 2&24—2a2f
rm

, 1 ‘
V 2(1 +1“) (59)

Since the path coefficient, b, represents the only path con-
necting the semete and the eenotype of the individual producing it,
b is equel to the correlation between the gamete and the genotype
from which it came. This correlation can be computed using the
following information.

.-

Qgggtzgg‘ Sameteg nroduced Freeuencg .3. _X__

AA A ' q2+ rlquvq) 2 1

As A q(1-q)(1-r1) 1 1

Ae a Q(1‘%)(3*f1) l. 0

aa a ' (l-q)2 + flq(l—q) O O

X is the number of A genes in the genotype.
Y is the number of A rrenesin the gamete.
fl is the correlation between eamotes which nave use to the parents

genotype.

8X : 2q2+ 2flq(1-q)+2q(l—q)(l.i‘l) :: 2o

SY :: q2+ f1q(l-—-q) -+ q(l~q)(l-f1) : q
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<.: If Aq2+ Aflq(1-q)+ 2q(1-q) (1-;1) - 40.2

2 2q(l~q)-+ 2f1q(l-q) : 2q(l-q)(1~+fj)

- «12+ f1q(1-'-q) + q(l-q)(1—fl) g- <32H: I

011—01)

Gov XY' : 2q2.+ 2f1q(1-q) +.q(1-q)(1—fl) - 2Q
H

2

Z q(1—q) + flo(l-Q) :: Q(l-q)(11‘fl)

b 3 .. q(1-q)(l_+f ) 1 .f
r“ ‘“ ”"1”“ . ~34“ (59)

42q<1-q)(1.+.f1>q<1-q) 2

’If f is to be greater than zero, the genotypes of‘sireanfl dam must be
correlated. In the absence of selection tkis will result-only when
they are related, 1.3. when thev have one or more common ancestors
or when one is an ancestor of the other. This will result in a path
connecting 6 land 62 which passes through the individual common to

both sides of the pedigree. For example, consider the situation
depicted in figure 2. ~

G G
‘fl \‘ . ‘\ G3

fl; \‘ \ [f3 \\.\ *’ rfl ~.
\5 n b5 \\« a A \l 511 b

*6 -u~-~‘ S ~m»; G ”3—H“; Semi”, M-) s—m....,~..c
e 34 1‘m‘ I

tc \\M.b4 I \ \\\
........ \-~\“‘ "4 m

N\““59 G d
1-3. b2 ,,

Figure 2. . » (}2 _)?-D «--M_9.G2
\ G/
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I, 1‘ 1+}... M m
2(14-f1)

’ + f .- m
: Cw 4 1

, 2(1 + £2)
b 17h
3 ~\ 2 a3 3 "\‘wnl—Wm”

”MM * 2(1+ f3)
“ lo’f

bl" b5 :\\‘ " 2

0 - a] b1 83 b3 b5 b4 62 b2

. TI} 1
a b 3 ;L ::.i“
1 1 \g 2 \ 2(1+ r1) 2

53133 :,\J £33.. \§ 1 - . 3’1“
2 ¢ 2(1+A-£3) 2

agbg :: \l.1;f2 ’\; 1 r «1-.-
2 2(1+£2) 2

le+f

- .4... 4£0...( 2 ) (1144) (60)

.~If f0 is the inbreeding coefficient of the individual 3, f) must4.
be the inbreeding coeffiC1ent of 8". Consideration of the source
of the exponent of l. in eq. (60) will show that in general this ex»
ponent will have the value nivnlavl where n is the number of pen-
eretions by which the common ancestor is removed from the sire and n 1
is the number of generations by which the common ancestor ié removed
from the dam.

If there is more than one common ancestor or one common ancestor
appears more than once in the ancestry of either the sire or dam of
the individual for which the inbreeding coefficient is being computed,
there will be more than one path connecting 01 and G . In accordance
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with the principle developed in the preceding section, F0 (the
correlation netween 61 and G2 ) will be the sum of the contributions
of all paths, and

f0 :- 2 {5%) n+n1+l (1+fA) (61)
u

where fA is the inbreeding of the common ancestor in question and
g: indicates shmmetion for all paths connecting 01 and G2 .

It should be noted that

m ’- fo / bibz
0%.... W

: E 11-33“) n-+n1+1(l+fA)” /,\’$i'5£§ \[l+§;~-

I " 2.—

_, < 21+?! 1'1 .- 24” him) 1 (l+-fA)J /1f(1*“‘-‘s)(1tfa)

.- <; l n1~n1 - -mlm_lm__mfl~w~
‘ 4'83) (1+fA)—§ /" (1+t‘s)(1+rd) (62)

where f :='inbreeding of the individual S and fd : inbreeding of
the individual D. This correlation is the soncnlled Coefficient
of Relationship of Wright (10). Note there is nothing about it that
restricts its use to individuals that have been or are to be meted
together or to individuals of opnosite sex.

Note: The correlations between uniting gametes
and between parents genotype and sametes produced
were computed with reference to hnly e single gene

. pair. This means the inbreeding coefficient refers
to the decrease in proportion of heterozygofies for
a single gene pair.in the entire population. But
if it gives the decrease to be expected with respect
to one sens pair, it gives it for any gene pair and
hence for all. -

‘3‘

XIII. Special formulae for the coefficient of inbreeding where a system—
atic scheme of inbreeding is followed.

Wright (9) gives e number of sneciel formulae for use in com—
puting the inbreeding coefficient resulting from the systematic use
of certain inbreeding systems. The derivation of one will be con¢
sidered. Figure 3 depicts the situation involved in continuous sibbing.
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bSl-«~»~»«e-GS a a //;7
7" \l \ /
f \y b G’

m1 1 a wamwa 2
\ ' \ 1/”? Figure 3.bD1 “4”?) G6 /

Subscripts (except in the case of the G's) are used to indicate
the generation for which a value eoplies, thee f is the inbreeding
of the most recent generatiOn, f1 of the one just precefiing it,
f2 of the generation before that, etc. Remember that while 31 is
shown twice in the figure, the same individual is indicated in each
case. Thus, for example, a 2 bl2 is the contribution of the path
S - 81 — D to the correlation m. The same applies for D.

' 2 e 2
m 3‘ 812 b12 4' a12 bl”g 4' a1 b1é m1‘+“al b12 m1

- 2 2 - 2 2 ' 2.- 2al b1 (1+~ml) ..2a1. (b1 >+- bl ml) (63)

f - b 2 m I(6 )1' 1 1 « 4

a12 : 5%ij:?l) (From eq. 5?) » (65)

l~+f
b12 1 ___§.§‘ (from eq. 59) . (66)

Substituting in eq. (63) using eqe. (64,65 and 66) we ohfiein

: . 1 "1+f 7

l f Zfl ~+ f2
2(14«r1)
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NOW

f' x: 11ft)2 (5'7)

2 _ l +.f ' ‘
d b ,u .l“

tan ” 2 (59)

Hence 1‘ 3 1+3; i’fg . 1441‘
2(1+«f1) "3"!“ :- (1 4‘ 2f1+ 1‘2 VI. (6'?)

Amplying this formula we find the inbreeding for successive generam
tions 0f sib mating to be as follows:

ngsggtgon _§‘

.25

.500
57.0"I .I' 1""

. £372

.73;

.785

.826mqoxmbwmw

Other formula of this type are as follows:

§vstem “3.” Limit of f

Random sire with daughters, grandé
flanghters, etc. . (1~é2f1)/s .50

Contimuous backcrossing to homozygous
parent. (3, {'fl)’/2 1.00

Offspring filth younger parent. (1.}2fl-rf2)/Q 1.00

Double first cousins. (4f3+*9fg+-fg~f 1)/Q 1.00

One male with large number of half
sisters (half sisters of each other).(6fx«%fg»+l)/8 & 1.00

Hair first cousins. (1+ [£24— £3)/32 .037

Limit of f is the highest level of inbreeding obtainable by
following the system of mating indefinitely. t is faund by sub-
stituting f for f1, f2 , etc. and solving for f. Thus, in the

first formula, this gives
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(1 +2f)/4

4f : 1+2f

f H

gr :. 1 , f 1: .50 (the limit of f)

Formulae for still other systems are given by Tright (9). System 5
is of special interest in animal breeding because it represents the
most intense type of inbreeding thet does not break a herfl up into
nonuinterbreeding lines. '

A useful approximate formula (Wright 11) For the percent of re-
maining heterozygosis which is eliminated in each generation when
mating is at random within a pepuletion of limited size is

”l.— -+ ~l- where M is the number of males and F the
SH SF .

number of females in the breeding population, For a breeding popu—
lation of 2 males and 7 females,'this would equal 1/16 +— 1/56 2. .08
and inbreeding would result approximately as follows:

Generation of
Inbreeding _§,

1 .08
2 .15
3 .22
4 .28
5 .34

References:

11. Wright, Sewell (1931) Evolution inwfienflelieu Pnpnlations
Genetics lg5_97~359.
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STATISTICAL CONCEPTS IN GENETICS

II. Statistical formulae

A small group of population parameters (the mean, variance, linear regression

coefficient, and correlation coefficient) will be used repeatedly. The student

should have at his command the basic formulae involving them. The most important

of such formulae are given below together with some attention to derivation. The

derivations given should receive the students'attention because they exemplify

sorts of algebraic manipulation to be used extensively in the material that
follows. Some of the formulae are given in several algebraic forms; the student
will find it helpful to have an easy familiarity with all of them.

A. variance

Consider a population of which the individual members are designated as
l, 2, 3, o o o, N

and their magnitudes in some measured character are

X19 X2! X3: ‘ ' '2 KN

The arithmetic mean (i) is

X1 + X2 + ' ‘ . XN
N

The variance (:5‘2) is, by definition,
, 2- sec?) .. 1%).

6’ 2 =w = ______.____.___.__x N N (1)

Let X1 = X1 "' 32, x2 ‘ X2 .— 32, etc. a

L, N ‘ (2)

Small case letters will be used throughout to symbolize deviations of a vari'ble
from its ~ean. Other uses will, of course, be made of the lower case letters
but when a variable is symbolized bu a specified letter the corresponding lower
case letter will be reserved for the deviation of that variable from its mean.

A“namingor
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The effects of coding on mean and variance.

Let the measured values of the above pepulation be coded by subtraction of
a constant value, a, from each. This yields a new population of values,

X1 - a, X2 - a, X3 - a, . . .
The mean is

”Kl-a‘fXZ-CL"'XE§_‘G=ZX‘NG ... - a N —' N”"’” = X - 0 (3)

The variance is

..2 _S<X-a-X+a> -soc-x) 2{T _ _ "‘ um = 1‘“’ (X - a.) I: N ‘5 X (1’)

Note that the coding changes the mean in the same way that it changes
each individual but does not affect the variance. Obviously coding by addition
would have similar conSeQuonces.
Next, consider coding by multiplication. .Let each value of the original
population be multiplied by a constant, 3. We then have the values

0X1, 0X2, 0X3 . . .
Their mean is

__ I‘ + V' "" ,OX = 0&1 ‘ OX2 ‘l’ . g . CXN 2 OX (5). N

Their variance is
«a! —2_2 _ S(cX — cX _ c%S(X - X) _ 2 ~26-CX ” “""'”fi""_l * “’”‘“"‘”‘ “ C S X (6)N '5'

Again the mean is effected in the some manner as the individuals. Clearly the
above covers coding by division since g may take a fractional value such as
1/10 and multiplication by 1/10 is the equivalent of division by 10.
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C. The correlation coefficient (/0 ) and the regression coefficient (/69).

Consider two populations

X1, X2, X3, ' ' ° with mean i, and

Y1, Y2, Y3, - o o with mean l.

By definition the correlation coefficient is

,o S“ " x)(y " Y) .. 3’” Sher/N Tm ( 3,- = ~ ‘ me = = , 7t .. 2 .. 2 ‘ g ,_.. .
"\l S<X - X) - se - Y) ”d 33:2 . 35,2 A\1 if. (, Sf x i y

where {vay = CFZXY = Covariance of X and Y.

so: - «xxx - E) = s _ crxy ' (8)
film: " S(X - 5'02 3x :3“ x2

- ' sS(X—X)(Y-Y)_ 3Cy__ em
#4) v = ‘ 2 _ 2 - 2 (83‘)Xu s(Y —. Y) 3y 5- y

n; in
’ “ XV
fl" = ' firxy’gxr (9)z¢'x 67y >

The equation of the regression (Y on X) model is

Y = l + A? x + e gI
or subtracting Y from each side of the equation

y = f? x + e

where g is a random error in Y not correlated with variation in X.
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Rearranging

e = y - /é’x

Se =s(y- flX)2=S(y2 -2/é71er+fl”x2)

ZSxy-Sxy S . S ' 2
. 2 0 2 2 — 2 + xy xy 8xsy - 2,4?SXY + ,6 3x - 8y - 3x2 sz sz

H

3372- (Sxy)2/Sx2 (lo)

392 is, of course, the sum of squares of the deviations of Y from regression on X.
It should be noted that if any value other than Sxy/ng were assigned /4? , 802
would be increased, 1.0. /A? satisfied the least squares criterion.

The equation for the regression line is

‘Y = Y +,é9x

Where Y is the predicted value of Y for any,r value of x inserted.
/§}C = ~ Y

symbolizes the deviations of predicted values from the me.n of Y and the sum of
squares of such deviations is what is called the regression sum of squares

2f1 2 m ‘ 2s(/ x)2= 5:: 23:2: = (“3) . 3x2 = 1.5ng (11)2 2 3"(8x ) I"

From (10) and (11)

302 + S(,/?X)ZS= -L§§El-+ i_§Xl_ = Syz 1 (12)3X2

or dividing through by N

26' + = 2e 6.503; ‘5' y (13)

CT 3 is frequently symbolized as CY'§.X . From (12) and (13) we see that
either the sum of squares or the variance of Y is divisible into two parts
(1) that due to regression, and (2) that due to deviation from regression.
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D. Variance of sums, differences and means.

Consider two populations

Al, A2, A3 ' - ‘ with mean A, and

B1’ B2, B3 0 a o with mean 5 .

2 2, SEFL
N

U}u
2'

(‘2:QA

Now let a third population be formed as follows

B=Al+Bl+A2*B.2"' =2+§N

Cl=Cl-.C-=A1+Bl-E-§:al+bl

02:02-C=A2+Bg-£-§=a2+b2

etc.
:2 “2 A; ' 2

c C N _ N -
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__ _ 2 ...2N N *T" SA*5§B*2/“ABS“AG“B (14)

since from equation (7)

Sch - , a.
N z/CABG'AUB

!The reader can easily verify that if the C s are ta‘r‘
A's and B‘s rather than as the sums,

2 -2 .G. = \ 2 n /‘ """"c G A *‘~ B 2/ gng‘Af) B

ken as the differences between
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In either case if /&? = O, i.e. A and B are uncorrelated‘5

6'0 A ”B
4,When the members of two such populations are paired at random /L will always be

zero. There will be many instances important to us in which this will be the
case. Equation (13) is true because there is no correlation between X and e;

The above can easily be extended to suns (or differences) involving any
number of variables. Thus

2 _ --2
€(A3BiC:D°oo)~6A (15)

+ 5? g + 5' 3 *‘CT
UN 0 o 0

provided none of the variabiles are correlated. Or

2
2 _._2 +62

XN

. ~ 26.- 000 “(:2 *6 +3.06.(Xi + X2 + X.3 KN) X1 X2 X3

If X1, X2, ' ° ' XN are all drawn from the same population
(“‘2 _ 2 - _ ,~.2 2J .. , — O 0 o ._ . = -.

and
2

{S (X + X + X - - - X ) = N'G"1 2 3 N

Now if this sum, (Xl + X2 + X3 0 . . XE),is divided by'N to obtain a mean, i,
applying (6) we find

-3..1 2 {5'26x*§§ NO' =“fi' (16)

the formula for the Variance of a mean.
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Note that all of the foregoing has dealt with population parameters

rather than sample statistics. This is the reason, for example, why the

denominator in the variance formula is N rather than N - 1. It also explains

why equations such as (15) involving variances of sums and differences can be

given as strict equalities rather than as approximations.‘ The reason for

approaching the subject in this way is that the parameters (the population values.

of the mean, variance, etc.) are the "expected" values of the analagous statistics

in sample data. Much of our time will be spent in the derivation of "expected"

values and for that purpose the above forms will be appropriate. Obviously, when

expectations are to be checked against observations or parameters are to be

estimated using sample data the appropriate sample statistics must be used as

"estimators" of the parameters. For example, if 82 is to be an unbiased estimate

of (5'2 it must be computed from the sample data as §£%_:_§ZE. rather than as

3(X § i)2.

groblems:

1. Give the variance of aX + % - z in terms of the variances of X, Y, and Z

assuming that a and p are constants and that X, Y, and Z are uncorrelated.

2. Give the variance of (i + l) assuming the correlation ( foxy) to be .5,

c' 3% to be 10, 5’ 32, to be 20, and N to be 12.

3. If X = A + bl + b2 + 0 0 ' br + cl + 02 + 0 . . an and there are no

correlations among the summed values, what is the variance of X? Consider the

b's as randomly drawn from one population and the 0‘s as randomly drawn from

another. What is the variance of X/n?

0 2 _ an F“
4. Given CV'C * 64, C) D = 100, and \3 CD = 32. What is the variance of rC + %

where r and t are constants?
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III. The genotypic improvement resulting from selection.

The value of a genotype may be measured either in terms of (1) its effect
on the phenotype of the individual which possesses it, or (2) the mean genotype
of progeny of that individual. For illustration, consider a pair of genes (A,a)
of which the gene A is completely dominant to its allele. Measured in terms of
their effects on the phenotype of their possessors, the genotypes AA and Aa have
equal value while by the second criterion of measurement (the progeny) their values
are obviously not equal. The value of a genotype with respect to the phenotype
of its possessor will be referred to henceforward as the ggngtypig yalug or the
value 9f the genotype. The deviations of such values from their population mean
will be termed the effect 2f the genotype. One individual till he said to be
genotypically superior to another if the value or effect of its genotype is greater
(this assumes that the method of measurement is such that high values are more
desirable than low ones).

We shall be concerned first with the effect of selection upon the difference
in genotypic value (as defined above) between selected individuals (or lines,
varieties, hybrids, etc.) and the mean of the population or sample from which
selections Were made, i.e., the genotypic superiority of selected individuals. The
effect of selection upon the mean genetypic value in later generations is a more
complex problem, consideration of which must be postponed until further groundwork
has been laid. However, as will be shown later, the gain reflected in later
generations is prOportional to the genotypic superiority of the selected
individuals.

Selection is based on the phenotype. The phenotypic expression of any charac-
teristic of an individual, e.g., height at a specified age, is thex‘esultant of the
genotype of the individual and the environment in which it develops. The relative



Mimeo. No. 3
-2— R. E. Comstock

importance of heredity and environment as sources of phenotypic variation is known
to vary greatly for different characteristiCS. Traits such as color are in general

.almost completely under genetic control though there are classical exceptions. The
so—called quantitative characters are for the most part much more responsive to
environmental variation.

We recognize intuitively that given a certain amount of genetic variation
selection will increase in effectiveness as variation in phenotype from environ—
mental sources decreases. It would appear that control of environment should
offer a Loans for making selection more effective and some effort in this direction
is productive. However, it is essential to recognize that a completely uniform
environment for all individuals of a group is an abstraction, never an actuality.
The environments (defined to encompass all non~genetic variables that affect
phenotype) of plants vary even though the plants are growing adjacent to each other
and the environments of animals vary even though all are handled as nearly alike as
is humanly possible. A little consideration of soil variation, competition, the
random distribution of parasitic and pathogenic organisms, accidents of various and
subtle sorts, etc. Will suggest many uncontrollable sources of environmental
variation.

As a preliminary exercise to gain familiarity with the meaning of certain terms
and notations consider a population of genotypes

G1’ G2: ' ' ': GN
of any plant or animal, and a population of environments

El, E2, 0 o 0’ EM .

Assume that one individual of each genotype is raised in each of the M environments.q" . o ‘ 4‘1 ' ,> r‘: ‘ n . h I .2 nUJubolize by P the measure of any characteristic suCh as height and assume the the
measurement is not subject to error. Let Pij be height of the individual with the
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ith genotype raised in the 1th environment. Thus, for example, P23 will be the

height of the individual with the genotype G2 raised in the environment E3. Let

§ be the mean height of the NM individuals, and

Pij ~ g = pij (17)

Thus

P11 ' 1" = P11

P27 ' E = P27

etc.

Then

911 * p12 * ‘ ‘ ' pin V
' n " gl’

the effegp of the genotype G1 for the population of environments involved. In

general

P11 * P12 + ' ’ ' Pin ' (18)
ll

the egfect of the ith genotype, and

P15 + P23 + ' ' ’ 9N3 : 0., (19)
N J

effegp of the jth environment for the population of genotypes involved.ct13" (D

Note that the effect of e genotype is defined in terns of the average,

for some specified population of environments, of the associated phenotypes. In
any practical selection problem it is important that the populatiep of environments
be delineated. For example, in selection among corn hybrids it might be composed
of these environments in which corn is raised in the Coastal Plain area of North
Carolina. In like manner the effect of an environment is defined in terms of the
average phenotype, for a population of genotypes, of individuals raised in that
environment.

NOW P11 - E is not necessarily equal to the sun of g1 and 010 The phenotypic

response to a given variation in genotype may not be the same in all environments;
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individuals differing in genotype nay respond differently to a specific variation

in environment. Is it the response to genotype or to environment which varies?
We cannot distinguish and resolve the situation by saying that there are genotype—
environnent interactions. Let

P11 - E = g1 + el + ill or ill = p11 - 5 ~ 01

P23 - P = g2 + 03 + i23 or i23 = p23 - g2 - 03

etc.

You will note that the i (the interaction tern) is the amount by which the
deviation of the phenotype from the general mean fails to be the sun of the
average deviations for the genotype and environment involved. In general

p -,=‘Pij'P=gi+0-+ (20)ijvr 3 iij

which is our nathenaticg model for phenotype. For practical purposes it is not
quite complete since it does not recognize errors of measurement which are always
involved in practical situations. {Euch errors are recognized by addition of
another term to the model.

pijk = g1 + 93- + iij + Zijk (21)

The third subscript is necessary because more hen one individual of a given
genotype might theoretically be raised in any given environment. Thus pijk
specifies the gth individual of the ith genotype raised in the ith”environment,
and Zijk is a random error in measurement of that individual's phenotype. The
phenotypic variance ( Q? g) for the pepulation specified is

2 = 2 - .2 "1CTP O‘g 4' (TED; 4' O‘i 4' 0"; [see (12), II"; (22)

Since the definitions of g, e, i, and 2 were such that there can be no correlations
among them. The reasonsfor considering this hypothetical pepulation were (1) to
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establish definitions of genotfipic effect, environmental effect, and genotype-
environnont interaction, and (2) the population described is of the type from
which the material with which we deal in practical problems may frequently be
considered a sample.

In certain instances, however, the parent population cannot be assumed to
be of the type considered above. The most important thing to be on guard against
is lack of independence in the distribution of genotypes and environments. (The
specification that each genotype was to be raised in each environment was one way
of describing the situation that would obtain in the population if genotypes and
environments were independently distributed.) It is probable that in the case of
certain human traits genotypes and environments are not independently distributed.
For example, both the IQ of children and the environment in which they are raised
are probably correlated to some extent with the IQ of their parents. Again in
natural populations which extend over areas which differ in average environment,
the distributions are likely to be non~independent since in each area there would
be a tendency for the best adapted genotypes to reproduce nest rapidly and these
best adapted might well differ fro: area to er a. Our primary concern, however,
will be with applications to controlled breediig programs with farm animals or
agronomic crops with Wiich random distribution can be affected.

For some of our purposes there will be no point in distinguishing environmentaleffects, genotype environment interactions, and errors of measurement. In those
instances the following simplified model will be used. a

P = 8 + G
in which g‘is the sun of the three non-genetic effects. In other cases, 2 will bedefined to include the measurement error, the effect of environment, and a fractionof the genotypevenvironnent interaction with i being defined to include a specifiedcomponent of the interaction. However, the complete model should always be keptin mind as a check on the applicability of any variate version.
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The estimation of the genotypic superiority to be expected
on the average in selected individuals is a regression problem.
we can measure phenotype so if we know the regression of genotype on phenotype
we can predict the amount by which phenotypically superior individuals are
superior in genotype. Let

P = 8 + e
where g is genotypic effect and e is the deviation of g from p due to
environmental variation, genotype environment interaction, and measurement
error. Then

Yr . + e ,-Cf“ :- Jar—BE :: Hgm———L = ”2&3 4-w (238.)pg N N N N
Note the absence of a correction term in the equation. It would be zero since
the means of p, g, and e are all zero. If genotypes are distributed at random
relative to variations in environment and the measurement error is random, there
will be no correlation between g and e, i.e. :2: ge will equal zero. Hence

2. a 3“ 2"‘" = 33L _.ng , N 6g (23b)

The regression of genotype on phenotype will be

,0 O” 4 {TEng = “-313 = """"""‘§ (24)'3‘. p {T P
5we can now set up the prediction equation for genotypic superiority of selected

individuals. Let

pS be the selection differential (the mean difference in phenotype between
selected individuals and the group from which they are selected), and

gs be the mean genotypic superiority of the selected individuals.
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Then

as (=) flgpps (25)

Where (=) is used to indicate estimation rather than strict equality in view of
sampling error present. If pS is measured in terms of the phenotypic standard
deviation we set

pS = k G”pv (26)

where g is the number of standard deviations by which selected individuals are
phenotypically superior to the entire group. Then

4 r.” 2 k (“W 2gs (=) p 1; rec-p = k _;__.g. (y = “—3 (25a)gp a" g p G"v p

This form of the equation has special utility for measuring the advantage gained
by reduction of the environmental component of phenotypic variance through
control of environmental variation. 3 is on the average constant when the
preportion of total individuals which are selected is constant. Since Gil;
is not a function of environmental variation the only term in the equation which
will be affected by change in environmental variance is Cy’n, Let us consider the
effect of variation in‘S'p On gs assuming 5 constant, i.e. that the selected
proportion of the population remains constant. Let [xfi‘p symbolize the
amount by which E? p is changed and flsgs be the corresponding change in
genotypic gain resulting from selection. Then

k 0*2
gs (=) ,TN (25a)L" P

s 2
gs 4‘ ‘13 $5 (=) g (27)

(Y 4- '‘ p -1 p
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and . I k 6' 2 k n: 2
A <=> --—-—-—-§--—-—-- - g

g8 4'" + A 6' (”3“\1 p . p ~ p

The expected increment in gs as a fraction of gs will be
I) g A a?” ' , .

s k 2 "- + [x 3'S g «3 p ‘ ~ ' P

In cases where (3' p is reduced (as presumably it would be if environment is made
more uniform) Arjp is 0. negative quantity. Let the change in ’5‘ g resulting

. 2from greater control on environment be symbolized by (e. - 1) C7 e where
o 4. a < 1.0. This is the amount of change in {Y 1%. Then

A gs ‘= Sp...“ - l = (3"% (
8s o- 4» Am ’\ 2 .2 ‘ 1 29)p p cs'p+(a-1)Ge

Substituting C". S - (S: g for (3: (since ’5"; 2 q: 4. 6‘2)
e

Ag L.“ 2
g s 3 /\ I; " 1 (29a)S 2 g _ (c _ . 2(S- p + (a l)( '-~' p ‘3' g)

If numerator and denominator of the term under the radical are both divided by
‘“ If, we obtain

l _.....'....§’. 3 i 4; _ l ’7: (29b)gs /\ 2 W 2
x 9. "“ (CL " l) 6' g/ {5 p

which is the fraction by which genotypic gain from selection is expected to be
increased as a. consequence of changing enviromnentnl variance by (e. - 1);“3‘53,
. 2 m. ' w ‘i.e. from (7 e to Q, (9; 4 (a. - l) ‘3 g = a. (3'3. Values of this fraction are
listed in Table 1. They indicate that when (5‘ 2 amounts to as much as one—half
of ”‘7 1%, control on environment is relatively inefficient in increasing the effect.
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of selection. Even when 57 g is rather low relative to 07 g, environmental
variance

Table 1. Values of A3 gs as a fraction of gs for varying values of a
and ("'E/ (T‘g (from equation 29).

.-2 ra g/ag

0. pl 03 O5 07 L ‘09
.9 .048 .037 .026 .015 .005
.7 .170 .125 .085 .048 .015
.5 .348 .240 .154 .085 .026
.3 .644 .400 .240 .125 .037
.1 1.294 .644 .348 ’ .170 .048

must be reduCed sharply if the effect of selection is to be increased very much,
i. . . . .a. 2For example when 15 g is one—tenth of {T‘g reduction of i; g to .7 {S e0

increases the exrected genotype gain from selection by only 17%.

The expected value 9: 3.

When the data on which selection is based are available the selection
differential, pS, can always be obtained directly. However, in theoretical
problems the expected magnitude of g, the selection differential in units of the
popul tion phenotypic variance, is often required.

If the sample from which selections are te be made is of sizea50 or less,
expected 3 may be obtained from Table XX of Fisher and Yates (1). This table
gives, for samples from N = 2lto N = 50, the number of standard deviations by
which the let, 2nd, 0 0 0 Nth individuals may on the average be expected to
deviate from the mean if the individuals of the sample are placed in rank.erder.
For example, if We are going to take the best 4 of a sample of 40, we find from
the table that en the average they will deviate 2.16, 1.75, 1.52, and 1.34
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standard deviations from the mean, respectively. The average of these figures,
1.69, is taken as the expected value of g. Assumptions involved are that the
sample can be considered as reidomly drawn from a parent population of the
"normal" form.

If selection is to be from samples of more than 50, the expected value of
3 can be obtained from the attributes of the normal curve as z/n where E is the
proportion selected and g is the height of the ordinate which divides the area
under the "normal" curve into portions relative in magnitude to the preportions
selected and rejected. The value of Q can be obtained using Tables I and II
of Fisher and Yates (l) or from the table in the Handbook of Chemistry and
Physics which relates to the "normal" curve. If the tables of Fisher and Yates
are used, Table I is entered with P equal to either 2W or 2(1 - W) whichever is
1.0 or less. (The factor, 2, is introduced since Table I gives the relative
deivate, x, beyond ahich a given proportion of the population, P, is found when
both tails of the curve are considered; we are interested in only the positive
tail of the curve.) Table II is then entered with the .35 obtained from able I
to find 2. ‘

Egggplg: 20% of the sample is to be selected, i.e. u = .2, P = 2n = .4,
x for P = .4 is .8416 (from Table I), z for x = .8416 is .2799 (from Table II).

k = z I? = .2799/.2 = 1.4
If the table from the Handbook of Chemistry and Physics is used, find the value
.5 - W (or if n >' .5, the value w - .5) in the column headed "Area" and read thevalue of g from the next coluni to the risht which is headed "Ordinate."

There will be. a slight upward bias in is taken as 2/?! since this assurles thesample from which selection is made to be of size approaching infinity. However,the magnitude of the bias will be unimportant unless the proportion to be
selected is very small.
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Problems:

5, Obtain the expected values of g for selection of .05 and .3 of samples
of size 20, 30, 40, and 50 using Table XX of Fisher and Yates.

6. Obtain the expected values of 5 for selection of .05 and .3 using Tables I.
and II of Fisher and Yates or the table in the Handbook of Chemistry and
Physics.

7. Assume (S‘g for annual egg production of pullets is 625. What is the
expected selection differential for the top 15 from a random sample of 100?
for the top 3 from a sample of 20?

8. Given cr'g/ 67's = .4 and (3"g = 100, what genotypic gain will be expected
from selection of the best half of samples of size 6, 12, 24, and 48? Obtain
these same values assuming CF”§ is reduced to .8 (T’é, .6(§"§, and .4:7‘:.

References:

1. Fisher, R. A. and F. Yates (1938) Statistical Tables for Biological,Agricultural, and medical Research. Oliver and Boyd. London andEdinburgh..
2. Handbook of Chemistry and PhysicS, Chemical Rubber Publishing 00., Cleveland,Ohio.
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IV. (con'd)

0. Cases where each genotype may be represented by more than one individual but
where the individual expresses the character only once.

Individuals of the same genotype are possible with pure lines or with

material that can be asexually propagated. Thus these sorts of material belong

in this category unless the characters are expressed more than once as in perennials.
Specific examples of traits in this group are the characters of inbred lines of
corn or single cross corn hybrids, and of varieties of such normally sclfefertilized
crops as oats and tobacco. Sweet and irish potatoes are examples from among the
horticultural crops.

Precision in the comparison of genotypes can be much greater with material of
this type. Because large numbers of individuals of each genotype can be produced,
the error of comparison can be reduced by replication. However, important questions
arise concerning the optimum amount of material to use in genotype comparisons and
the optimum distribution of the material relative to the pepulation of environments
for which we wish to evaluate the genotypes.

As a concrete example of the practical problem consider the evaluation of
strains of cats for use in the Piedmont area of North Carolina. The population of
environments involved are those which occur in that area. Specific sources of
variation in environment that are recognizable are soil variability within the area
and variation in the climate complex from year to year or from one part of the area
to another in the same year. It is quite obvious that selection among varieties
based on data collected in one year and at one location could be quite ineffective
with respect to genotypic value for the population of Piedmont environments since
only one of the soils and one of the "climates" would be involved. we recognize
that the evaluation of the genotypes should be made on more soils and in more
helinates". How can we decide such practical questions as how many locations and
years should be involved in a variety trial and how many replications should be
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used at each location in each year.

The mathematical model is more involved in this case since we wish to

subdivide the total effect of environment into portions arising from several

specific sources. Let

Pijklm ‘ gi '* aj» “' b1: 4’ °ij * an: + fjk + hijk * um 4' 7:31:52 ‘* Zijkge ~ (48) ‘
where

pijklm is the deviation from mean phenotype for the nth individual of a plot of the
ith genotype in the lth replication at the 1th location in the 3th years

» gi = the effect of the ith genotype

p CA. I! the effect of the 1th location

bk = the effect of the 3th year

Cij = the interaction of the ith genotype and the 2th location
dik = the interaction of the ith genotype and the 3th year
fjk = the interaction of the 1th location and the 3th year

hijk = the second order interaction between the ith genotype, the ith location and
the 5th year.

ujkl = the effect of the lth replication in the 1th location and the 5th year
Vijkl = the effect of the plot on which the ith genotype is raised in the éthlocation, the 3th year, and the ggth replication.
Zijklm = measurenent error plus the effect of intra—plot environmental variation forthe individual in question.

Of course, some of these effects cancel out in the comparison of genotypes if each
genotype is represented by the same number of individuals in each replication,
location, and year. Suppose each genbtype is represented by a plot of n individuals
in each of g replications at each of g locations in each of 3 years. Then
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S ‘
SP1 =nrstgl+nrt E: c~+nrs :bk4rnrt: cl.¢nrs Zd

3.313 ‘k= 3" J k=1lk

.2- 1‘ . .

The sum for any other genotype will be the same except for substitution of the

subscript for that genotype wherever the numeral one appears as e subscript in the

above expression. This leaves unchanged the terms involving the year effects, the

location effects, the interaction of year and location, and the replication effects;

tent is, those terms are constants in the sums for the various genotypes. Being

constants they will not contribute to the variance of the phenotypic means and will

be omitted from the equation for the mean, 51.

- Sp1 SE: ( P; s tp = m . = g + c ' + ”A '-
1 nrst 1 j a 1 lJVS ké'lmlkvt 4' 32:1 kgl‘h-ljszt

S t r ‘ s~ t I. n ‘
4' Z Z Z (V151<.§13)/r5t 1* Z: Z X Z: (lekaVm'St (4%)j=lk=lfi=l j=lk= gall-11:1 '

The variance of the mean phenotype for e genotype will be (see equations 6 and 15,
section II).
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‘ 2 = (”‘72 + SU‘E + ’73 + st 0“}? * strCT‘z, + strnCT‘g
i3 g s.2 t2 sztz 52,0er Sztzrznz

so; (so)
str strn

where
€7~§ = genotypic variance

(3-3 = variance due to interaction of genotype and location

5'3 = variance due to interaction of genotype and year

<3"§ = variance due to interaction of genotype, location, and year

(3‘% = variance due to environmental variation between plots in the same replication,

and

(3*: = intra—plot variance between individuals of the same genotype.

If means are computed on the basis of plots as is common where the number of plants
per plot is large, we have n5, the variance of which is

2 2 2 2 ,.2
DP s t st str strn (50a,

what is ordinarily called the experimental error or strictly speaking the within

replication plot variance is in our notation n2£?'§ +rn<S E.

If as before we write

§=g+e
then

2 _ 2 ,, 2513 €g+ce

and
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where
226.2 nzfg+n2€§ n26§ 116.5, n20”: (50b)n =

0 s t + st + str + strn

is the non-genotypic, and n2 (I: the genotypic portion of O~ £13 . Clearly

increased replication will not by itself be a very good method for decreasing

n26” i if interactions of genotypes with locations and years are very great. What

is needed in that case is to increase _s_ and t, the numbers of locations and years
at which the genotypes are compared. As a basis for deciding the optimum ratios
between g, t, and ;, estimates of the several variance components are required.
They can be obtained from the data of variety comparisons conducted in several ‘
locations in more than one year. Assume as above that each genotype (variety) has
been replicated 3 times at each of __s_ locations in each of 3 years and that there
were 33 individuals of the variety per plot. The analysis of variance would be as
follows.

Source of Variation 9g; M Eflectation of 122.3,
Locations :3 - 1 V
Years ‘1: - 1
Locations 2: Years (s - l)(t - l)
Reps in locations and years st(r - l)

Varieties e - 1 Ml 112(0‘2 + my? + meg + rscré

+ rts 0" g)
’1 .1 ' 2 2 2 2Var. 1: locations . (s - l) (G - l) B412 n (<15~ «r rt'fh + rto‘c)

v sq 2 2 2 H 2or 3: years (t ~ l)(G - 1) M3 n (qr + ro‘h + rscrd)
Var X loc x years (5 - l) (t - l) (G -l)M4 112(0‘2 4- rag)

‘Var X reps in locations 2
and years st(r - l)(G 6- 1) MS n 0‘2

Total strG - l
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2 2 ..2vis equal to n <3 * n<5"§As used in the expectations of mean squares n2(5
of (50a).

The mean square expectations are appropriate functions of the population
variances derived on the basis of the arithmetic operations involved in computation
of the mean squares. Let us first consider the variety mean square. The population
variance of variety means is given in (50a). Now remember that the mean square is
computed as the sample variance of the variety suns divided by £332 the number of
plot totals that are summed for each variety. The variance of variety suns is
r2s2t2 times the variance of variety means and dividing it by'ggt we have from

(50a)

6'2
n

n2(rst6’§+rt6§+rs€§+r6§+63+ )

Substituting Cr 2 for (3'3 + £%;% we have the expectation of the variety mean square
.as given in the analysis of variance.

The variety x location mean square is con-uted from the variety suns for single
locations. As a working procedure for obtaining its expectation, we will (1) write
the equation for such sums, (2) subtract all terms involving effects not specific
for a given genotype and location, (3) write the expression for the population
variance of the remainder, and (4) divide that variance by the number of plots
totaled in these suns as is done in computation of the mean squares.

Step (1)
t t tV '- o 7 o . rSpij ~ rtngl + rtnaJ + rtnciJ + rnk glbk + rnk/j; dik + rnkglfjk

t

2: €- s’i ’° 1‘
+ rn h . + n J u + n :E' 37' v vk ~. .A k -. “in. .1W1” k=l£=131 k=1 X=113k£
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Step(2)

g. ’9- 51:. .12 31:. I}.
S'p - = rtno-- + rn 4.. h~-, + n.12” «a v.. + 2;. ‘r_ 2;. z_. p

13 13 k=113L kzlg=113kX k=l£=lm=llak2m

$22421

Variance = r2t2n26" i 4' r2n2t 6'13 4- nztr o." ‘2, 4- rtn CS“ ‘2'

Step (4)
. 2Variance = n2(rt(€’ 2 .,, 1.5.2 +5.2 4, (Y z

rt ‘ ° ‘ h V n

The final expression is the mean square expectation as given in the analysis of

variance.

The steps outlined above may now be put in a general form that will be

applicable for determining the expectation of the mean square for any source of

variance in the analysis of variance table. The first two steps listed above can
be combined into one. The steps involved are then as follows: (1) write the
equation for the sums used in computing the mean square, omitting all effects not
specific for a single one of these sums. Note that effects specific for single

sums will include among its subscripts those necessary to specify the sum.
(2) write the variance of the expression [;remembering (6) and (15) of

section 11:] . (3) Divide the variance by the number of plots totaled in each of

these sums. For a slightly different rule for writing mean square expectations
see Crump (8).

Given the mean square expectations the procedure for estimating the variance
components from the mean squares is easily seen.

\
M5 *“} n

(M4 -—Ix.:15)/ri *5 nzs'fi

(Ia-i3 - M4)/rs M; n2 0“?

(M2 ~ Izzy/rt m» 1:2 (Vi

(Ml - mg 3- in + rig/rat «:7 n2 6‘:
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where ‘7" is read "is an estimate of".

As a numerical example an analysis of variance is presented below of data on

yield of 10 varieties of soybeans at each of 5 stations in each of two years. The

comparison was replicated 4 times in each location and year. We have then: G = 10,

s=5,t=2,r=4.

Source of Variation 51,; ML; Digs, Eflectatign

Years 1 424,453

Locations 4 l , 044, 298

Y x L 4 1,632,833

Varieties 9 422,236 n2(0‘”2 + mi + 205% + 85%

+ 40 6“ g)

V x Y 9 . 42,950 r12((3’2 +4.37% 4» 206%)

v x L 36 46,359 n2(r$‘2 + 457%.:- 86f)

v x Y x L 36 60,744 n2(6'2 + 45%)

Reps in year and location 270 12,716 112 6' 2

A. somewhat unexpected result is noted. The V x Y and V x L means squares are

smaller than the V x Y x L mean square instead of larger as was to be expected
assuming 3 g and 6‘ g greater than zero. Since variances cannot be negative
Quantities the most logical procedure probably is to conclude that .0" g and <8”?
are zero (or at least of insignificant magnitude) and to use all three of these
interaction mean squares as estimates of 112( 6' 2 + 4 c" :3). On this premise our

estimates of the variance components are as follows:

Component Estimate
n2 e 2 12,716
n2 6* I21 [9(42950) er 36(425359) + 36(60,744) _ 12,714 /4

= 9,914
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(con'd) Component Estimate

n26 ‘3 zero
112 (5” g zero

'n2 6' 3 {422,236 .. 9(42,950) + 333E463”) + 36(60,’744)

= 9,247

1'1th 3 for the experiment as conducted is estimated as
. *19914 1 71E».= 0 (fr: Ob ‘”Ll—5— + 40 13 9 L. on (5 )3

2and as an estimate of n26” E/ C” 111') We have

_9._£____27 =-.
9247 + 1309 ‘88

The above estimates are, of course, subject to sampling variance. However,
if the data were sufficient to assure that the estimates were substantially correct,
they would furnish a basis for deciding the manner in which varieties should be
tested in the future. Referring to Table 1, Section III we see that when
6“ §/ fl”; is as high as .7 to .9 there is little to gain from attempting to decrease
fir g, i.e. in the case under discussion there would have been no point in increasing

either replication or the number of years and locations at which the comparison
was made. If the estimates of the variances were substantially correct, reduction
of replication to two in future comparisons would result in reduction of the
expected value of n2 G“ 2/ 5* fi- only top

23:7 12716 a '85
9247 4' 10 "’ '56“

The data indicate that very little was gained from using 4 replications instead of
two.

A brief swtuizary of implications of the relative magnitudes of the variance
components with respect to the design of selection programs is pertinent at this
point.
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Unless 6' 2 is very large relative to the other components of non—genetic

variance, more than two replications at a single location in a single year

will rarely be worthwhile in terms of 43 g5, the increase in progress expected

from selection.

When 67' g, variance due to interaction of location and genotype, is very large,

selection for average performance over the entire area frOn which the locations

were drawn should be abandoned if a criterion can be found for establishing

sub-areas within which CT'E will be much reduced. The reason is that when

this interaction is large there is probably no single genotype that will be

SUperior under the conditions of all locations in the area. By subdivision

on some meaningful basis such as soil-type, drainage, etc., it may be possible

to find genotypes with superior adaptation for all locations of a given

subwarea. (Note that the criterion may not divide areas along geographical

lines;) The location-genotype interaction that remains after further area

subdividion becomes impractical must be dealt with as error variance in the

genotype comparisons and controlled by making variety comparisons over a

sufficient number of locations.

When 57 g is very large the only useful action is to increase 3, the number
of years over which tests are run, unless measures of climate or effect of
climate are available before planting time which will serve to divide the year
population into sub-populations within which year-variety interaction would
be greatly reduced. For example, it is possible that genotypes respond

differentially to soil moisture at planting time and that certain varieties
might be recommended for use when soil moisture was high and others when it was
low. (The intent is not to say that this is or is not a reasonable possibility.
The example is advanced only to indicate the sort of thing that would be required
to eliminate year-genotype interaction as a source of error in recommendations
of superior genotypes.)
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4. Variance due to second order interaction of genotype, year, and location.
In general, this variance must be looked on as error variance to be controlled

by increasing locations, years, or both. However, to the extent that it is.a
consequence of variation in weather between locations in the same year there
is a possibility of dealing with it as suggested in the case of <Y’2.

D, Cases where each genotype may be represented by more than one individual and
phenotype is expressed more than once by each individue .

The most common examples are the perennial crops capable of asexual
propagation. The_annually expressed characters of fruit trees, strawberries,
blueberries, sugar cane, etc. belong in this group. Traits of perennial forage
crops in which seed is produced entirely by apomixis also belong here.

The situation for these traits can be resolved into one very similar to that
for category C if we take the point of view that the trait should be measured in
terms of its average expression during the lifetime (defined in terms of commercial
practice) of an individue . Unless we assume that the expression of the trait is
uncorrelated with age (usually an untenable assumption) lifetime performance is
expressed but once though, as will be discussed below, sample portions of lifetime
performance may be considered as separate expressions of it. Our model will be as
follows:

pijkflx': gi+aj +bk+oij +dik+fjk+hijk+ujk£ *Vijkfi

Y n i3. y
2:: v. + « * j: z‘. 1

l ljk £0 2- = l ‘0 = 1 iJk £130 (5 )Z"{0: 1321le213 11

where pijk:¥ is the lifetime sun (of annual measures of the trait) for a plot of the
ith genotype in the :£_th replication at the jth location in the 3th testing periodo
(A testing period is taken to mean a set of years over which a single planting of a
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genotype comparison is observed. 0 = l, 2, - - o y is used to identify single

years of the testing period.)

81, a3, and cij have the same meaning as is equation (48)

bk is the effect of the 3th testing period

dik is the interaction of the ith genotype and the 3th testing
period.

fjk is the interaction of the ith location and the 3th testing
period.

hijk is the second order interaction of the ith genotype, the jth H
location and the 3th testing period. ‘

uij is the effect of the 1% th replication in the 2th location and
and 3th testing period.

Vijkfl. is the effect of the plot in which the ith genotype is raised
in the jth location and 3th testing period that is constant
for eaCE year of the gth testing period.

Vi'klio is the portion of the plot effect in the 9th year that is
J temporary. (These effects are assumed to be randomly

distributed with respect to plots and years.)
Zijk,£m is the effect of intra-plot environmental variation for the

gth individual of the plot that is constant for all years
of the 5th testing period.

Zijk,(mo is the portion of the effect of intra-plot environmental
variation that is temporary. (These are assumed to be
randomly distributed with respect to plants and years.)

This model differs from that of the preceding section (equation 48) in three
ways. (1) The unit of time involved in expression of the phenotype is recognized
as a set or series of years instead of only one. (2) Random plot and intra-plot
environmental effects are subdivided into a portion that is constant through the
testing period and another that varies from year to year. (3) The phenotype is
measured on the plot basis instead of the plant basis.
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The mean for a genotype (omitting terms that are constant for all genotypes,

as in equation 49a) is

s t s t
pi = 81 4" .2: (cij)/S 4“ i (dik)/'b 4' '3', A: (hijk)/St

J = 1 k = l 3 = l k = l

s t r s t r y
+ . -~-- 0 t ' ‘- + *4 (“fl m W ‘ flZ Z 2. (V:|.3k1‘.)/rgt Z” A Z. (2‘ (VijkgoVrst
j=1k=1fiL=1 j=ln=l£¢lo=l

s t r n
T? M‘ “T" V:

* .L- - {m 4-» (ZijkmerSt3 = l k = l £f= l m = l

s t i?" n y
+ 2:: 25: n_« 2:; 2:: (2.. )/rst (52)j=lk=l .£=1m=1o=1 ”Hm"

where

s = number of locations
t = number of testing periods
r = number of replications at each location in each testing period
n = number of individuals per plot, and
o = number of years per testing period.

From (52) the variance of a genotype mean is seen to be

"2: 7-2 2

where
» m ‘2 4—2 s 2 «2 2 .(3 ‘3 a a ~ u 5“.

(7'5 = 8 + (5.3 + v h + b V + y V' + n 3 Z + ny '_§1 (53)s t st rst rst rst rst

An analysis of variance using plot sums (for the entire testing period) as-the unit
variable and data collected in ; replications at each of § locations in each of 3
testing periods would take the following form.
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Source of Variation gag; Egpectetion of M43,
Location ' s - 1

Testing period t - 1

L x Tp ‘ (S ' l)(t ‘ 1)
Reps in L and Tp st(r ~ 1)

Varieties G - l 6‘2 + rsfi 1- rs (vi 4» rte: + r1335“:

V X L (S * l)(G ‘ l) (72 + r5”fi + rt€?§

Vchp (t-l)(G-l) (2+rrYfi-rrse'é

VxLpr (s-l)(t~l)(G-l) Jgg'z‘l'r‘fi

V x reps in L and Tp st(r - l)(G - l) (5—2 =63, 4- 3763, + my: 4- nyq‘i'

Total strG - 1

In addition plot values by years may be used to compute e mean square for

"varieties x years in replications in locations and testing periods" which will
have as its expected value, 6‘5, + n}? 3‘. If large plants such as fruit trees
are involved and therefore a minimum.number of plants per plots would be desirable
estimates of 67 g and 47 i, will be useful. These can be obtained using date for
individual plants by years (if available) to compute mean squares for "plents in
plots" and "years x plants in plots". The expected value of the former will be
e’ i, + ya’ :3: end of the letter will be (5'3, .

From the foregoing it will be noted that all variance components on which
information is needed as a basis for deciding how selection experiments may best be
conducted can be estimated if appropriate data are available, However, date
involving more than one testing period is not likely to be available for longflived
plants. Indeed, extension of trials over two non-ever-lepping testing periods
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would best likely he impractical for such plants. Alternatives that suggest

themselves are (l) spacing locations Widely enough so that weather correlation

among them is not likely to be high, and (2) over-lapping testing periods. The

latter would mean that the planting year and perhaps one or two more would be

different for each testing period and the initial years may have the most profound

effect on lifetime performance.

If the cost of taking data from producing plants is very great the experimenter

should consider collecting data in only a portion of years of the testing period

in the case of long-lived plants unless 5‘ 3: orifi‘ :. are so large that so doing

would appreciably increase 57 g. The effect can be seen if (53) is rewritten
n “" 2 e ain terms of G fi/y, the variance of a genotype mean on a plot per year baSis.

54
52 62 $5 8; *YZ‘ 62: n62 infig’.4 e = ~ 0 + - + ‘ V V + Z + ”J+

sty2 rsty2 rsty rsty2
+

y2 syz ty2 rsty

If the form of the performance curve over the lifetime of the organism has
economic importance, it will perhaps be taken into account best if considered a

separate attribute to be measured in terms of one er more regression coefficintsa

Ergblens:

11. (a). Assume that a comparison of 12 oats varieties had been conducted at two

locations with 6 replications in each of 3 years. write out the form
of the analysis of variance including the mean square expectations

required for estimation of f? g and the components of :Y'g .
(b). Suppose the comparison had been conducted at only one station. write the

analysis with mean square expectations and show that a clean estimate
of 5? é would not be available.
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12. Assume that you have made a cross of two varieties of irish potatoes, that

Fz‘s have been tested in a disease nursery, and that adequate vegetative

planting material of each of a large number of disease-resistant selections

is at hand. Assume further that from previous data you have good variance

component estimates which are as follows.

10{TN0410ON H

G}

x .4 16

Now suppose you can plant a trial involving 400 plots that can all be at one
‘1ocetion or can be divided equally among anywhere from 2 to 10 locations.
However, if the trial is extended over 2 years only 200 plots can be used per
year. How many varieties would you put in the trial at how many locations in
how many years and in how many replications per location-year? The object is
to make gs as large as possible.

13, Below is an analysis of variance of data collected by P. H. Harvey in a
comparison of 25 corn hybrids.

d.f. Mos.
Locations 4 2772.0Reps in Lee. 10 72.3
Genotypes 24 32.19G x L 96 6.78
Reps X genotypes in locations 4.26

Compute estimates of variance e nponents that can be made from these data.
Compute gs for the best hybrid of the 25 on the basis of this trial. Its
averafle yield for the test uas 3.8 above the average for the 25.

References:
(8) Crunp, S. Lee (1946) The Estination of Variance Components in Analysis ofVariance.' Biometrics 2:7—11.
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V. Simultaneous selection for several traits.
When the economic value of an organism is a function of more than one charac-‘

teristic, it is logical that each trait affecting merit should receive attention in
selection directed at genetic improvement. Hazel and Lush (9) showed that it is more
efficient to consider.each such trait in every generation of selection, provided gash
trait is given its proper ggight relative to the others, than to follow the plan of
improving the individual traits one at a time. It should be noted that in certain
instances the optimum Weight to be given a specific trait will be so high that the
optimum basis for selection is essentially selection for that trait alone. In such
cases the slight gain from attention to other traits may not compensate for the cost
of collecting data on them. This situation might be expected, for example, in the
first stages of selection following a cross of two strains one of which was l
resistant and the other susceptible to an important disease to which resistance was
an absolute prerequisite for practical purposes.

Giving a specific weight in selection to each of several traits amounts to
basing selection on an index of the form

I=lel+b2X2+v -3*ann
where X1, X2, . . -, Xh are the phenotypic values of the traits considered and
b1, b2, . u o, bn are the relative Weights accorded the n traits. The term,
selection inggg, will be used specifically in reference to such an index in which
the b‘s are given the best estimates of their optimum values.

If phenotype were unaffected by variation in environment every individual would
express its genotypic north phenotypically and selection would be straightforward
and efficient. The weights to be given different traits would then depend only ontheir contributions to the economic value of the organism. However, not only doenvironmental variations affect phenotype but their effect on phenotypic expression isgreater for some traits than others. It is obvious that proper weighting must take
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cognizance of these facts. For example, suppose economic Worth of an organism were

a function of two traits and that phenotypic variation in one of these traits was
entirely non-genetic but in the other was largely genetic. Attention to the trait
for which all variation was non—genetic would accomplish no genetic improvement.
6n the other hand, it would mean a lower selection differential and hence loss
gain from selection in the trait which was varying genetically.

A. Equations for the estimation of optimum weights,
The estimation procedure was first given by Fairfield Smith (10). He

demonstrated its application in a consideration of selection among varieties of
wheat. Details of the estimation procedure were also given by Hazel (11) who
reported on the construction of a selection index for use with swine. Applications
to selection in poultry have been considered by Pense (l2) and Lerner 9t g; (13).

The following derivations differ in details but not in fundamentals from the
presentations by Fairfield Smith and Hazel.

Let W symbolize economic worth and gw the genotype for economic north. Genetic
improvement implies increase in gm. To be effective in increasing/gW selection
must be on a basis which will result in choice of genotypes for which gw is above
its mean for the population. Using an index of the form

I = blxl + 13232 + , o o ‘+ ann (55)
selection will be most effective when bl, b2, u . ., bn are given values that make
the correlation of I with gw as large as possible. These are the optimum values
of the b's refe red to earlier. These optimum values will be sumbolized asq

56 l’agyz: ' ‘ ‘y d? n'II
The problem is of the multiple regression type. The X's are the independent

variables, and gw the dependent variable to be predicted or estimated from knowledge
of the X‘s. The regression model for relation of gW to the X's is

I} ' = l? I x,”W /5?0 + f. 1X1 + /3 2X2 + ° . ° + ”3 nxh (56)
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where g; is the average value of gw associated With a given set of X’s. The
magnitude Ofl/630 does not concern us since it is a constant and will have no
effect on the differences between estimates of gm. (Only the differences are
important in the selection process.) By reference to Fisher (14) or Snedccor (15)
we find that appropriate b’s (estimates of thejfl? 's in multiple regression) are
obtained from simultaneous solution of the following set of equations.

‘\. 2 '
blel + b28x1x2 + ' ° ' + bnSXixh 3 SXlgW )
blsxlxz + 13232;“: 4- o ‘ v + bn3222rn = szgw k

I K (56)
fl. 2 fblsgixn 'I' bzsxzfi + O O o 1' “19311 = 0351181N If

nemember that x1 = X1 - E1, x2 = X2 - 32, etc.
How consider the quantity, Sxigw. Since x1 = g1 + el,
legw = Na + efigw = Sela” + Selgw

However e1 is a random environmental effect uncorrelated with genotype, and so
the expected value of Selgw is zero, Hence Sxigw is on the average equal to
Sglgw. In like manner nggw, SXng: etc. are on the average equal to SgggW,
Sg3gw, etc. Making the substitutions, Sglgw for Sxigw, SngW for SXQgW, etc.
and dividing each of the equations by (N ~ 1), we have

blspll + b231312 + ' ' ‘ * buspln z Sglw \..
blspla + bZsp22 + . . ' + bnsp2n = ngw (. .

(57)0

flblspln + bzspzn , o . o + bnspnn SgnW

where spll = an estimate of the phenotypic variance of Xi,
splZ = an estimate of the phenotypic covariance of X1 and X2,
Sglw = an estimate of the genotypic covariance of Xi and w,
etc.
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When only two traits are to be considered in selection there will be two equations

blspll * i3251312 = Sglw

blsp12 + b25p22 = Sng

When three traits are to be considered the set will involve three equations
llblSpll ‘* b28p12 4' b33p13 8'ng

551312 '* bz‘ipzz * ”3.51223 3 figs—x
blsp13 + b35p23 + b38p33 = Sg3w

and so forth.

' B. The expeeted effect of selection.

The efficiency of selection can be measured in terms of the expected genotypic
superiority of selected individuals, strains, or varieties over the mean of the
group from which they were selected. This will be the product of the selection
differential (mean difference in selection index between selected group and the
entire group) and the regression of gW on the selection index.

The selection differential in accordance with previous notation is keb'I
and the regression of 3w on I is (F'Igfi/(S“§. Thus the expected genotypie advance
is I

. kmke’I 33511 = leg"
“.2 (58)e I (5‘1

Since x1 = X1 - i, XQ = X2 ~ i, etc.,

Ihi=lel+b2X2+Oua+bn}{n

Then
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6— Emit
Igw= N -

M
Z(b1x1 sf b2x2 + ‘0 - t + 10:115an

N

1’12 ”3%: b2 2 ngw bn E xngw= + . . + I o O +m (59)N N N

and

2 Z (I ' 32 ' 26"]: z N = Z (1);}{1 '1’ b2X2 4- o . o + bnxn) /1\.E

Expanding and collecting terms appropriately this becomes

2 _. ' ’4‘ ‘ .. "W(TI - bltblzn 1% + ‘02: Xlx2 + o o n + bné— xlxn\./N

s: ..... -+b2[blL.XlX2*b22—X§+I - o +anX2an/N

*"'bn.[b12—xlxn+b2:X2xn+-"’+bnE-X§]/N

Substituting in terms of equations (56) this can be written

2 __ blZ‘ xlgw 1322* ngw an Xngw6‘ x * ~ + + ' ' ' + (60)N N N

From (59) and (60) We see that (5‘ = (5'- i or 6' = r46.” .

Hence (58), the expected advance from selection can be written
k VG IgW We...
":1" = k figgw
461%

“it: * ‘wwvww «wwmmmm WM...“Mi ___.
~ bl 4. xlgw b2: ngw + + bu: xngw

N N "“1?“
Finally, remembering that, in ariving at equations (57), it was shown that
T _ it"
4—." x1ng ‘” 4* 813W, Z ngw = Z gggW ,_ etc. , We can write the expected genetic
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advance from selection based on the index as

'V..-u‘..,.W.o.—.v ... -, . l.“ ,.-».rm- a...“ -WMMa »...‘.......s. -p)...»-w...___; m

k AV! b1 6'23le + b2 (ngW "' ' ' ‘ 4’ bngf’wgnw (61)

where 6781“ is the genetic covariance of X1 with gw,
u...Q)g2m is the genetic covariance of X2 with gw,

etc.

C. Estimation of variances and covariances required for solution of equations (57).
The estimates of phenotypic variances and covariances of the X's

(Spll! Splz’ etc.) must be appropriate to the sort of values to be used in the
index. For example, if selection among strains is to be based on means for r
replications at each of g locations in each of 3 years then the estimates should be
for such values. They can be made directly from data involving such means or can be
built up from estimates of the variance or covariance components involved in
accordance with equations (50) and (53).

The estimation of covariance components from the mean products of an analysis
of covariance is exactly analogous to the estimation of variance components from
the mean squares of an analysis of variance. This was pointed out by both
Fairfield Smith (10) and Hazel (ll) though the procedure has not been used
extensively.

An analysis of covariance involving data on two traits (say X1 and X2) from a
field comparison of genotypes at different locations and in different years
would take the following form.
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Source of variance §:£1 Expectation of mean product
Locations 8 - l '
Years t - l
LXY (s-l)(t-l)
Reps in years and locations st(r — l)
Varieties ' G ' 1 , "5'12 ‘* r5512 * 5" W112 " tr “2-12

+ rst 7*g12

VxL
(5'1)(G’l) ‘712+r‘5h12*tr{‘7§12

V x Y (t ‘ 1W3 " 1) “7712 + rfihlZ * “”2112
v x Y x L (s - l)(t ~ 1>V(G - 1) 5‘12 " r‘7h12

X and“ we - Mr - v

Total strG - l

G, s, t, and r have the same significance as in Section IV, C and D. The
numeral subscripts of the 57"5 indicate the traits involved and the letter
subscripts have the same significance relative to the source of the
covariance components as they had in Section IV relative to sources of
variance components. For example Cywclz is the covariance between the
location-genotype interaction effects for X1 and Xé.

The covariance of genotype means for two traits can be written in terms ofthe covariance components in a form anelagous to that for variance. For examplethe covariance between genotype means of X1 and X2 is
61312: 5g,2+_5‘_£la+.fi&il§+f_nl_g+ 6’12J. 8 t at I'S'b (62)

The genetic covariances of the X's with gw can be estimated from analyses ofcovariance (like the above) of the X's with economic worth. An obvious prerequisite
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is definition of economic worth and all data required to compute the values of it
to be used in the analyses. In agronomic or horticultural crops, north may in
some instances be defined simply as yield'whereas in others a satisfactory
definition will need to involve both yield and some measure of quality. Once w
has been defined and tabulated, estimation of its genetic covariances with the X‘s
is analagous to estimation of genetic variances except that, as indicated above,
it inVOlves analysis of covariance instead of analysis of variance.

In case selection is to be between individuals (instead of between strains,
lines, or varieties) as is often the case with animals, the variances and
covarainces of equations (57) must be for individuals, not for group means.
The estimation of the phenotypic variances and covariances of the X’s is then
completely straightforward. However, the estimation of genetic covariances will
need to be made somewhat indirectly from data involving related animals. This
will be taken up later since the basis for the possible procedures has not yet
been laid.

D. Indirect estimation of the genetic covariances with economic worth.
In some instances the available data will not include all items necessary

for computation of n. When this is true it is sometimes possible to estimate the
genetic covariances indirectly.

Let a1, a2, . . u, an be the increases in economic worth that result from
unit phenotypic increases in traits l, 2, 0 . .’ n when each of the other traits
remains unchanged. Then the genotype for economic worth Can be written as a
function of the genotype for the Q traits.

and the genotypic covariance of w with the ith trait will be
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G—giw = Sgimlgl+ '3'ng ‘* ‘ ' ° * aHard/N

ll S<alglgi + 92g2gi 4’ . . . + angngi)/N

fl
al 0" gli + 6‘26 g2i + ' ' ' 4’ ai‘Sflgii + ""+an6-gni (62)

If one of the p traits does not affect economic worth directly, i.e. variation in
it causes no change in economic worth when all other traits remain constant, the
corresponding a-value is zero and the term involving that a~value drops out of the
equation.

Existing data on animals is frequently not complete enough so that direct
estimates of the genetic covariances between economic worth and individual traits
can be made. On the other hand estimates of the genetic covariances among the
individual traits may be possible using different bodies of da a for the
estimation of different covariances. It is in such cases that equation (62)
becomes useful. [LFor example, see Hazel (11). E In the case of plants the
collection of data for the specific purpose of constructing a selection index is
feasible and can be accomplished in a reasonable period of time. Thus with plants
the worker is not so dependent on existing data collected for other purposes
as in the case with animals, especially those which reproduce slowly such as sheep
and cattle.

The a-values.

' The a's stem directly from definition of economic worth in the organism in
question. For example, in work with Sea Island cotton, H. L. Manning (unpublished)
defined economic worth in terns of yield. It was not necessary to bring in quality
since the entire range of quality in the population with which he was working was
within the range suitable for the purposes for which the cotton was to be used.
The individual traits on which selection Was being based were bolls per plant (X1),
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seeds per ball (X2), and lint per seed (X3). Since the cultural practice
involved a constant number of plants per unit area of land economic worth (yield)
was a function of these traits as follows:

W = X1X2X3

Obviously, if X1 were increased by unity, and there Were no change in X2 or-
X3, the increase in W would be Kgxg. If X1 were increased by unity for the entire
population, the increase in mean W would be S(X2X3)/N . Thus reasonable a—values
in this case were

as (X2):3 )/Na1

1!a2 s(X1X3)/N

a3 = 3(X1X2)/h

An alternative procedure (used by Fairfield Smith) would have been to define
economic worth as the logarithm of yield. Tintlthe expression for W'Would have been

W = log yield = log X1 + log X2 + log X3
Then if the index were to be based on logarithms of the X's, the a's would all be
100 since change in W in response to change in the log of any of the X's is exactly
the amount of the change in the log in question, This approach has the advantage
that the a's are independent of the population mean values of the X's. What
may be a disadvantage is that the use of logs results in giving more weight to
variations among low values of the X's than among the high values.

As an example from livestock the following is presented as a possible
definition of economic worth in dairy cattle.

X1 = annual production of 4% Fat Corrected Milk in lbs.
MN I* cost of rearing minus disposal value

* length of productive lifetime in yearsGS“ J
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maintainence cost per yearNX4
0 value per lb. of Fat Corrected Milk in excess of cost of productionexclusive of maintainence cost for the animal.

X3 would not ordinarily be a useful measure for use in selection beceuso so
much tine is required to obtain it that its use would seriously retard a breeding
program. The alternative and probably more practical procedure would be to treat
X3 as a constant equal in value to the population mean for productive lifetime.
The a-velues for X1, X2, and X4 would then be

8.1 = c

02 ... “1/523

a4 3 '1

The a-values for any traits which do not enter the function for economic
worth must be zero since variation in then will not cause variation in W so long
as other traits remain constant. Thus a—values for disease resistenco or plant
habit in plants or for aspects of conformation in dairy cattle would be zero.
This does not mean that they should not receive weight in an index. Indeed their
genetic correlations with worth or their phenotypic covariances with other traits
might be such that they should be weighted heavily.

E. General remarks.

The foregoing serves only to outline what is involved in the problem of effi-
cient use in selection of data on the various important traits of the organism in
question. To have given sufficient detail to cover procedure in the variety of
situations in which this problem is confronted is far beyond the scope of this
course. The essence of the problem is always the same but in details it differsso much from one situation to another that the construction of an index for anysingle organism constitutes a research project. Such a project will alwaysinvolve two phases.
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1. Definition of economic worth. Sometimes this will call for considerable
effort in itself. For example, in the worth function proposed for dairy
cattle the appropriate value for g would require careful consideration of
the relationships over time between milk prices, feed prices, labor costs, etc.

2. Estimation of variances and covariances re uirod for estimation of the b's.q .
.It should be noted that a great deal of investigation remains to be done

relative to statistical aspects of the selection index problem. Anong the nest
pressing questions is that of the amount of data required to furnish satisfactory
approximations to the optimum index; The most connon procedure in practice
probably is to weight traits in proportion to their economic importance. From a '
practical point of ViGW it is important that any basis for selection adopted as an
alternative be at least as efficiento To insure this there is obviously a
minimum amount of data on which such an alternative index must be based. Data
being accumuleted at this station will serve to throw some light on this question
within the next few years.

Preblems.

14. Following are estimates of phenotypic variances and covariances and genetic
covariances in Sea Island cotton (from unpublished data of H. L. Manning).

11.94H.8le = 9’49 ’ 81:12 i 6-85 : $51322
Sng = 3946 , 83217 = 7045 ; ng = 7.20

(a) Estimate the b's to be used in the selection index, lei + b2X2 = I.
(b) Estimate the progress expected from selection based on

1. the selection index
2. X1, bolls per plant
3. X2, lint per seed
4. w, yield

(It will not be necessary to substitute a numerical value of 5, sincethe gain in units of k will suffice for con arisen of thfor selection.) p 0 four bases
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STATISTICAL CONCEPTS IN GENETICS

VI. Gene Frequency and the Distribution of Genotypes.

The frequency of a gene is its number in the population expressed as a

fraction of the total number of loci at which it or an allele of it is present.

For example, suppose that of 100 diploid organisms, 30 are of the genotype

BB, 60 are Rb, and 10 are bb. There are 120 B genes and 200 loci occupied

either by B or its allele, 2. Hence the frequency of B with respect to this '

population of 100 individuals is 120/200 = .6.

When using letters to symbolize genes, the large case will always be used

to designate the most favorable of a set of allelic genes. Thus it will always ‘

be understood that B is a more favorable gene than b, C a more favorable gene

than an allele 2, etc. The letter‘g will be used to designate the frequency of

the most favorable of a set of allelic genes. Then if such a favorable gene

has only one allele, the frequency of its allele will be (lpq).

The Distribution of Genotypes in g Eggdom Hating Population,

Segregation of a pair of allelic genes (B and b, for example) yields three

genotypes; BB, Bb, and bb. Assuming random mating and equal viability of

the different gametes and genotypes, the expected ratio of genotypes homozygous

for the favorable gene, heterozygous, and homozygous for the less favorable

gene is qz: 2q(l—q): (l-q)2. This can be demonstrated as follows:

The probability of a gamete containing B is obviously'g and the probability

of 2 specific gametes, i.e. two combining to form a zygote, both containing

B is qz. Thus the expected proportion of BB zygotes will be Q2.

The probability of a gamete containing Q is (l-q) and the probability of

2 specific gametes both containing b'is (l—q)2. Thus the probability of Eb

zygotes will be (l—q)2.

The remainder of the zygotes must be of the Bb type. Since the total of

the frequencies of the three types must be 1.0, the expected frequency of
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heterozygotes is

1-q2 — (l—q)2 = lwq; ~ 1 + 2q - q2 = 2q52q2 : 2q(l—Q).

When two gene pairs (say B, b and C, c) segregate independently, the

expected frequencies of the various possible genotypes will be as follows:

Genotype Freouenex Freeuencv of BB. Bb. and bb

EBCC

BBCC 2
qb

BBCC

BbCC

13ch 2qb(1-qb)2qc(l~qc)

Bbcc qu(l-qb) (1--qc)’2

2bbGC (l—qb) <15

‘9ch (l—qb)22qc(l-qc)

bbcc (lqu)2(1ch)2

The key to these frequencies is obvious. For example, if the probability

of a genotype containing 28's is qg and of a genotype containing 20's is qg,
the probability of a genotype containing both 2B‘s and 20‘s is ngg .

In general, if n gene pairs are segregating independently in a random

breeding population and viability is equal among gametes and zygotes, the
expected frequencies of the various genotypes can be obtained from expansion

of the expression

q A + - (1... )a 2 + ,. 2 2l 1 ql l (129:2 (l~q2)&21 on. [qnji-n +7 (la-qn)an ] .

In each term of the expansion the particular cembination of A's and a's

species the genotype, and the portion involving q‘s and numerical values gives
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the frequencies.i For example, if n = 4, one term of the expansion will be
2 A

4q1q2(1~q2)q3(1-q3) (ls-<11")2 A1£§1A9a”;éi3a3a’34 .

This term indicates that the genotype, 51A1i2a2A3a3a4a4, will be expected in

the frequency 4Q§q2(l-q2)q3(l-q3)(1.q4)2. There will be a term in the

expansion for each of the possible genotypes.

Of some special interest is the frequency of the genotype homozygous for

all of a set of desired genes. Clearly this will be qi q: ..... qfi. If

ql = q2 = ..... = q,n as in the F2 of a cross of homozygous lines this becomes

Linkage between loci prevents independent segregation. In the event of

linkage between loci the foregoing relative frequencies of genotypes may be

regarded as equilibrium values that will be approached over a span of

generations if the actual frequencies in a random breeding population are for

any reason out of equilibrium. For example, the joint distribution of

genotypes at linked loci may be expected to be_out of equilibrium in a.

population descended from a recent cross of contrasting genotypes. How

rapidly equilibrium is approached will depend on the closeness of linkage .

(see

The Distributionmpf Genotvpes in Inbred PoeulgtionsI

Inbreeding may be defined as the mating of related individuals. It is a7

form of non-random mating. The closest or most intense sort of inbreeding is

self—fertilization. Because related individuals are more likely to possessthe

7 same gene at any given locus than are non-related individuals the progeny of

matings involving inbreeding will on the average be homosygous at more loci

than the progeny of random matings.
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All sorts of inbreeding which result in progressive decrease in
heterozygosis break a population into non-interbreeding lines. For example,
a self-fertiliZed line can contain no more individuals in any one generation
than can be produced from the seed of a single plant, the parent of that

generation. is heterozygosis decreases the individuals belonging to such a
line must become more and more alike in genotype. 0n the other hand different
lines may become homozygous for different genes at a given locus and so while
inbreeding reduces genetic variation within lines, it increases the genetic
variation in a population of such lines. .

wright (16) devised a measure of inbreeding commonly called the coefficient
of inbreeding. Its calculation is such that its magnitude is the expected
decrease in heterozygosis in an inbred population as a percentage of the
heterozygosis that would have been expected in the same population if there had
been no inbreeding. Inbreeding as measured by Wright’s coefficient will be
symbolized as f. The distribution of genotypes involving two allelic genes
in an inbred population will be as follows.

Genotype . Freguencv

BB Q2 *7 fq(1-q)
Bb ~ 2q(l~q) (1—f)
bb (be)2 + fq(1-q)

Comparing this distribution with that expected under random mating it will be
noted that the increase in homozygous loci is divided equally between the BB'
and bb types. As g approaches 1.0 the frequency of the BB type approaches 9,
and that of the bb type approaches (l—q). The gene frequency in the whole
population is unaffected by inbreeding if the population is large. On the
other hand the gene frequency in any one inbred lines of the population shifts,
as inbreeding continues, from q to either 1.0 or zero. There is no directional
force involved in this shift. It occurs, instead, because when a line is ‘
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carried from one generation to another by only a few gametes, the opportunity
for randem shift in gene frequency is greatly increased. This is most easily
perceived in the case of self-fertilization where the line is carried from
one generation to the next by but two gametes. Obviously if the line is
heterozygous for a gene in one generation there is an even chance that it
will be homozygous in the next. Thus the expected decrease in heterozygosis
in any generation is fifty percent of that present in the preceding one.

The derivation of wright's coefficient and some of the consequences of
inbreeding will receive attention in a later section.

References:

16. wright, Sewall (1922) Coefficients of Inbreeding and Relationship.Amer. sat. 56:330-338.
17.
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VII. Genotypic Variance Arising from Segregation of a Single Pair of Genes.

If both members of a gene pair (say B,b) are present in a population,

three genotypes (with respect to the B locus) will appear; BB, Bb, and bb.

Assuming random mating and equal viability of the different types of gametes

and zygotes, their expected frequencies will be in the ratio q2:2q(l-q):(l—q)2.

Let the average effect of bb on the organism be v, that of BB be (v+2u), and

that of Bb be (v+u+au). Note that the effects of the three genotypes are

not specified as constant but in terms of averages for the population. These

effects would be constant only if there were no interaction of genotype at

the B locus with either the remainder of the genotype or with environment.

The situation is summarized in tabular form below.

Genotype Fregnencz z; 2

BB q2 2+2u ' u
Eb 2q(L—g) z+uiau au
bb (l-q) z _—u

y; is the phenotypic average for the specified genotype.
g, the value of y' for the bb genotype, is the sum of
1 and the average effect of the remainder of the genotype with

respect to the population of environments involved.
is obtained by coding y': y = y' - (z+u)
is the number of B genes in the genotype.
reflects the dominance involved in the action of the genes. When
a = O, the heterozygote is midway between the homozygotes, i.e.
there is no dominance. If there is dominance-of B, a > 0.0; if there
is dominance of b, a < 0.0.

The total genotypic variance due to segregation of this pair of genes is

,_, son - (Syn/N2CF y N

Since N, the total frequency, = 1.0

a"; = e2 - my)?" .
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qzu + 2q(l~q)au - (l-q)2u

(<12 - l + 2q - q2)u + 2q(l—q)‘au

‘ (Zq—l)u + 2q(l—q)au (63)

£12112 + 2q(l~q)8=2u2 + (l-q)2u2

[dz + (l-q)2]‘u2'+ 2q(l--q)a'2u2 - {qu—l)u + 2q(l—q)au:}2

[C12 + 1-2q+q2 - 4q2+4q-l] 112 - luau-«11)(2q-l)au2

' + [Zqfl-q) - 4q2(l~q)2] a2u2

= 2q(1-q> [1 + 2(1—2q)a + (1-2q+2q2)a2] u2 (64)
The total genotypic variance,(j'§, is divisible into portions which are

called (a) additive genetic variance, and (b) variance due to dominance

deviations from the additive scheme [See wright (18) and Lush (3), page 74] .

The additive effect of the gene B may be defined as the regression of *

y' (or of y, which will be equivalent) on x, the number of B's in the

genotype. This definition is couched in different words but has the same

meaning as that given by Wright (18). The additive genetic variance (or the

variance due to additive effects of the genes) is the variance in y that is

accountable to linear regression on x. Remembering that the regression

coefficient is computed in a manner that minimizes the variance due to

deviations from regression, it will observed that the additive effect of B is

defined such that as large a por tion of(}‘§ as possible will be explained

on the basis additive gggg effects.

It happens that in a population where mating is random, the additive

effect as defined above is the response that would be obtained from substituting
B for b, averaged for all loci in the population at which b is present (and
hence the substitution is theoretically possible). Thus, the concept of
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additive effects applied when gene action is not of the simple additive
sort is not so abstract as it may at first appear. Lush (3, page 73) defines
the additive effect of a gene in terms of its substitution value.

The derivation of formulae for the additive effect of B; the additive
genetic variance, and the variance due to dominance deviations is as follows.

Sx 2q2 + 2q(1-q) = 2q (65)
{jfiié 5x2 - (8x)2 (remembering that N = 1)

‘ 4q2 + 2q(l—q) — 4q2 = 2q(l-q) (6-6)
C7 Sxy - (SX)(Sy)

" Zqzu + 2q(l—q)au - 2q [(2q-l)u 4‘ 2q(l-q)au]

(see (63) for Sy.]k
‘ [éqz - 4q2 + 2q] u + 2q(l~q)(1—2q)au

2q(l—q) [1 + (l-2q)a] u (67)
The additive effect of B is by our definition

byx = G—xy/ 6.x = [l 4' (1-2q)a] u (58)

It is comparatively simple to verify that this same value will result from
computation of the average substitution value of B. Substitution of B for b
in the heterozygote increases y' by the amount (upau). The frequency of
heterozygotes is 2q(l—q) which is therefore the frequency of possible
substitutions having the effect (upau). Substitution of B for b in the bb
genotype increases y‘ from -u to au, i.e. by the amount (urau). Since the
frequency of the bb genotype is (l-q)2 and since there are two loci per individual
of this genotype at which the substitution is possible, the frequency of
possible substitutions having the effect (ufau) is 2(l-q)2. The average
effect of all the possible substitutions is

2q(l—q)(u~au) + 2(1—q)2(u+au)
, 2q(1-q) + 2(1-q)2

q(u~au * lw ufau _=___L_J._3.M____l - 1+ (1—2 )a]uq” (Iv-<1) [ q
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as obtained for the regression of y on K see (68) .

The additive genetic variance, to be symbolized hereafter as G g,
was defined as the portion 01‘6” g due to regression on x. Hence

~ 2 _ 6‘2 _ 2 20 g ~ £2 - MM) [1 + (rt-zeal u (69)
63: J

[from (11), (66), and (67)}
. 0Note new that when a = O, i.e. when there is no dominance, 6‘; = (3'2y

[substitution of a = 0 in (64) and (69) leads to 2q(l-q)u2 in both cases].
This is logical since with no dominance, we have simple additive gene action

and all genetic variance should be of the additive sort. 0n the other hand,
whenever a 7‘ O, 6 Egg; . The difference is the variance due to deviations

from regression resulting from dominance and is termed variance due to

dominance deviations (from the additive scheme). It will be symbolized

hereafter as O"- : o

6‘ 3 =0? - 0—: = 4q2(l—q)2a2u2 (70)

[from (64) and (59) ]
Values of the Additive Effect and the Genetic Variances when a takes Values

of Special Interest

1. When a = 0.0, i.e. there is no dominance.

(a) byx = u for all values of q.

(33} G" g, = G: = 2q(l—-q)u2 with maximum value when q = .5. Values are

listed below for several values of q.

(LEM:(T2

o 18112
c 32112
. [+2u2
.48u2
.50u2
.48u2
o 42112
.32u2
. 18112
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Note that for q = .2 to .8 the genetic variance is from 64 to 100

percent of its maximmn.

(c) 0' g = 0

When a = 1.0, i.e. when B is completely dominant to b.

(a) bjx = 2(l-q)u. It approaches Zu as q approaches zero and approaches

zero as q approaches 1.0. Thus the additive effect of a dominant gene

is high when its frequency is low, but low when its frequency is high.

(b) 6.; = 4q(2—q) (l—cflzu2 with maximwn when q = .293[For corresponding

formula see Wright (19)] .

(c) (T g = 8q(l--q)3u2 with maximwn when q ' .25.

(‘1) (7‘3 = 4q2(l-q)2u2 with maximum when q ’ .5.

The maximmn for GE is at q = .5 for all values of a. [For formulae

corresponding to (c) and (d) see Fisher (20)] .
0 h o 2 .(e) The ratio offi‘gtofi’szris

0‘ fi/ 0‘; = 2(1—q)/(2-q)

which approaches one as q approaches zero and approaches zero as q approaches

one, in harmony with the behaviour of the additive effect of the gene.

Values of this ratio and its complement, 6' (21/ Q” 32’ , are listed below

for various values of q.
2

3- gis/Ei G 51/ 5 5°?

.2 .88 .12

.4 .75 .25

.5 .67 .33
06 057 043
c7 04—6 054
.8 .33 .67
09 .18 ' .82

3. When a > 1.0, i.e. when the heterozygote is superior to the superior
, +homozygote, and q = L5}- .

2a
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(a) byx - O

(b)5§=o

” 2 = 2(0)6..(1 0y

(d) § = (2qel)u + 2q(1-q)au is at its maximum.

lie . . .2;:' 18 listed oelow for several values of a.

(1+a212a[m

1.0 1.0
1.5 .833
2.0 .75
3.0 .667
4.0 .625

Problems:

Plot byx’ 6" 5;, 6" g, 0’ C21, and 0' 5/532, against q for a = O, .5,

1.0, 1.5, and. 2.0.

References,
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l9. wright, Sewall (1931). Evolution in Mendelian Populations. Genetics

20. Fisher, R. A. (1718). The Correlation between Relatives on the
Supposition of Mendelian Inheritance. Trans. Roy. Soc.
Edinb. 52, Part 2, 399‘W4330
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STATISTICAL CONCEPTS IN GENETICS

VIII. Genetic Variance Arising from Segregation of Two Independently AssertingPairs of Genes.

Consider two pairs of genes (say Bl, bl, and B2, b2) segregating independently
in a random breeding populationQ Assuming equal viability of all types of gametes
and zygotes, the distribution of genotypes may be represented in a two-way table as
follows:

Bl, bl genotype

B2: b2 genotype BlBl Blbl blbl Mean Frequency
/ 2 2 r5232 012132 2qxl - q)p (1 — q) pg p2

Y22 YlZ YOZ Y.2 ‘
52102 20121.0(1 - p) 4q(l— q)p(1-- p) 2U»- q)2p(1- p) 2p(1 ~ p)

Y2]. Yll YozL Y,1
132192 (12(1 -—- p)2 2q(l— q)(l- p)2 (l— q)2(1~p)2 (1 - p)?"

Yze YlO Yea Y.o
Mean Y2; Y1° Ybo Yao
q 2 2rrequency q 2q(l — q) (l — q) 1,0

q is the frequency of the gene B1, and
p is the frequency of the gene B2 .man

The expressions in p and 3 in the nine cells of the table are the frequencies of
the nine genotypes resulting from the possible combinations of one of the B1, bl
genotypes (indicated on the upper border of the table) with one of the B2, b2
genotypes (indicated on the left border of the table). For example, quZ is the
frequency of the BlB13232 genotype. The genotypic values are symbolized by Y with
subscripts identifying the genotype. The first subscript refers to the Bl locus,
the second to the B2 locus, and the numerical value of the subscript specifies the
number of favorable genes. Thus YIZ is the genotypic value of the genotype containing
one El and two 32's, i.e, the genotype BlbleBzO The presence of a dot in place of
a numerical subscript indicates a weighted average of the Y's for all genotypes of
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the locus indicated. Thus, Y2° is the weighted mean for the genotypes, 81518232)
BlBlB2b2, and B1B1b2b2, 1.8g.

Y2, = qungg + 2q2p(l — p)Y21 + q?(l — p)2Y20

Y.° is the weighted mean for all genotypes for both loci, the general meana
The total variance among the Y's (or in other words, the total genotypic

variance) can be partitioned into three major parts,

(1) The portion between Bl, bl genotypese
(2) The portion between B2, b2 genotypes.
(3) The remainder which arises from interaction among genotypes at the two lOCiu

The first two portions can be further submdivided, in accordance with Section VII,
into additive genetic variance and variance due to dominance deviations from
segregation at the B1 locus and the 82 locus, respectivelye It may be helpful to
consider this partitioning of the total variance in terms of an analysis of
variance table.

Source of variance gggg
Bl, b1 genotypes 2Regression on number of El genes 1

Deviations from regression 1
B2, b2 genotypes 2

Regression on number of B2 genes 1
Deviations from regression l

Interactions among Bl, bl and B2, b2 genotypes A
Total E

Let us first consider the variance due to B1, bl genotypes and its subdivision into
additive genetic variance and variance due to dominance deviations arising from
segregation at the El locus. In terms of symbols established in Section VII,

Y2
Y1. = z + ul + alul

=z+2ul

You—‘Z
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(The subscript attached to a and u identifies them with respect to the locus for
which they apply, the B1 locus“) Obviously,

(YZe w YO. )/2 f111 = u,
e = / 3 ralul (2Y a - qu - YO-a)/2 g U71)

a1 = (2Y1° “ Y2“ - Yb“) “j
" Yzo “ Yea

These values could be substituted in equations (69) and (70) to;firnish expressions
for Cf"§ and {§“§ in terms of the Y‘s, but the expressions become cumbersome and
have not proven very useful. It has been found more convenient, when analyzing two
locus genetic systems, to first assign numerical values to the Y's, making it
possible to determine 3 and a as functions of g and p which can then be substituted
into equations (69) and (70). The values assigned the Y's will of course depend
on the genetic situation to be studiedo Two examples are given near the end of this
sections

The values of u2, azuz, and uz are obviously

112: W42" Y.o)/2 ‘8

agu2 = (2Y°l ~ Y”2 _ Y,O)/2 {“ (72)
k

a2 = (21,1 .. YQ .. Y.o) ,1;
Yoz .— YQO

The total genotypic variance is

2 _ 2 “ ,SW13 °' Y”) ~ q2p2Y22 + ZqCL ~ q)p2Y§2 + ° ° ° + (1 - q)2(l - p)‘y§0 .. Y?“ (73)

As before the correction term is simply the squared mean because the total
frequency is unity. Now, if we set

11Y22 Y“, + <22 ~ Y.» + (Y6 - x”) + 122

Yl2 = You + (Yo2 ~— Yoo) + (Y1. '- Yai) + ilz
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and in general

Yij = You 4‘ (Yoj - Y.,) 4» (xi. .. Yoa) + iij ('74)

we have defined a set of i—values such that

iij =3 Yij - (Y.j "' Y.°) '- {Yin "" Yea) -" YOJ? (75)

If we substitute for the Y’s in (73) in terms of {74), the following expression can

be obtained
"{r ‘2 2 2

Na «KJ2=I}%n2~gn +eo-pxn1—rg +o-pfium~yu>j

+Ifeg-Yufi+2al-eob-Yflfi+(l—ehn.~rnfl

+ I $132152 + 2‘1” " 9132152 " ' ° ° + (l s 092(1 ~ p>2i§oj
The first of the three bracketed quantities is the sum of squares due to differences

among means of the 82, b2 genotypes, the second is the sum of squares due to

differences among means of the B1, b1 genotypes, and the third is the sum of squares

arising from interactions among genotypes at the two loci. Remember that the total
frequency is unity and that therefore the variance and the sum of squares are
equal. Remembering, also, that the variance among means of the genotypes for a

given locus is composed of additive genetic variance, Cfmg, and variance due to
i O O 2 I ‘ l!domlnance dev1atlcns, (S‘ds the variance from segregation at two nonellnked loci

can be expressed as

2: 2 2 + 2{3—37 G'g + ng G + cj-g + ('5' (75a)1 Hue
where numerical subscripts identify the locus and G; g is interaction variance.
The i's may logically be called interaction effects. Lush (21) calls them epistatic
deviations from the additive schemea Interaction variance is absent when all iis
have the value zero? ieea, when there are no interaction effectso

The analysis of variance table indicated but four degrees of freedom for
interaction. This suggests that relationships exist among the 1’s such that all
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could be expressed in terms of four of them. It is not difficult to show this to

be the case. Note that
, 2%.=&%2+@h—pwflr<l~mrm

Substituting for the Y‘s in terms of equation (74), we get

2:! p2 LYéo + (Yg2 "' Yea) + (Yge ~ Yen) + 12“
~11

Y
j

+ 2p(1 "‘ p) LYGG + (Y,l .. Yeo> + 01,2» ~ You) + 5321‘}

+ (1 ~ n2 [You + mo -— w <22» - Y”) + 120]
H Y2. + pzi22+ 2p(1 _ p)121 + (l — P)2120

from which it is apparent that

fin2+en-pnfl+<1~mhm=o .

Proceeding in the same way a total of six such expressions can be shown to holda
However, only five are required to specify all the relationshipso The following
is one set that embodies all the relationships among the nine ;!Sg

2-; D 2. andP 122 + 213(3— "’ P)121 + (l "‘ P) 120 "‘ O
. . . 2P2102 * 2p(l ~ P>101 + (l w p) 100 = o

2' ' 9 I ——q 122 + 2q(1 - q>112 + (1 ~ q)2102 * O F (76)

QZi + 2 (l u )i + (1 )2‘ = o20 q q 10 “ q 100

«12:: +20 ’)- M1 )2- ~ “21 q n _ q 111 - q 101 ~ 0 ‘J

Making use of these experssions all nine 1‘s can be written in terms of only four
of them.

When interaction among genotypes of the two loci is absent, ioe., when all its
equal zero ,

Y22 " YO2 z Yél " Yo1 = Y2o ’ Yeo Y2° " Y0°
and . 77)

2212 — Yég _ sz = 2Y1; — Yzl — 01:“2Y10 ~ r20 _ ECO = 221. ~ Yea a qu
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These equalities hold only when all i‘s are zero. Now expanding equations (71)
for ul and alul, we obtain

2111 = p2(Y2 .. :02) + 2p(1 - pun; ~ 2'01) + (1 - Mezzo - Yea)
and

2a1u1 == P.2(2Y12“Y22" Yoz) + 2p(’l-,- p) (2Y11- $21- YOl) + (lap)2(2zlo— YZO- YOO)

From these expressions we see that when equations (77) hold (in other words, when
interaction is absent) the values of “l and alul, which measure differences among
the effects of the El, bl genotypes, are not dependent on p, the frequency of B2.
Of course, this is only a high—powered way of showing that interaction is absent
when interaction is absent. Viewed in this way, the content of this paragraph seems
a silly matter of going around in circles. However, the fact that, when interactions
are present, “1 and alul vary with frequency of a gene other than B1 should upon
reflection prove illuninating with respect to just what the values a and a
represent. It should be apparent that these quantities are not constants for any
particular locus, but that they may have one value in one population, another value
in another population, An obvious extension is the fact that the additive genetic
variance and variance due to dominance deviations arising from segregation at a
particular locus can be affected by the frequency of genes at other loci as well as
by the frequency of genes at the locus in question.

The final point to be made is that in the absence of interactions among non-
allelic genes the total genetic variance from the segregation of a number of gene
pairs is simply the sum of the additive genetic variance for all pairs plus the sum
of the variance due to dominance deviations for all pairs. Symbolicolly,

2 _ -
Gr" ZU?’ 26$

when there are no non—allelic interactions.
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Exam leg

t is instructive to study the composition of the variance from a pair of
loci assuming specific interaction systemsa

Qe§§_l

Consider the classical case of complimentary action between two genes, in
which either gene by itself has no effect but the presence of both results in an
effect which does not depend in any way on whether either gene is present in the
duplex or Simplex condition. Examples of this sort of two factor inheritance are
given and discussed by Sinnott and Dunn (22)a The situation is adequately specified
by setting

flY22 = Y2]. = 1712 = Yll l
and

V = :: ... — --‘20 Yoz Yio “ Ybl ‘ Yoo * 0
Then YZQ = 2100 = p2 + 2p(1 ~ p) = p(2 ~ p),

YO“ : 0

and from (71)

“1 = p(2 - p)/2 and a1 = 1,0
From (69)

2 - c” “ 2(5”gl * 2q(l ~ q) {_ l + (l - 2q)al} ui.4

2q(1 ~ q>3p2(2 ~ p)2I!

and from (70)

2
(Shd ll 2 2 __2 ,2l 4Q (1 u q) aiuf ~ q (l - q) p2(2 _ p)2

Proceeding in the same way

H2CT"g2 2p<l - p)3q2(2 ~ q)2
and

I2
C7&2 ” P2(l —-p)2q2(2 ~ q)2
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To obtain the total variance Y" must first be computed

Yea = QZPZ + 2q(1 - q)p2 + 2q2p(l ~ p) + Aqil ~ q)p(l ~ p)

The total variance is then

2if é = 2p2 + 2q(1 - q)p + 2q2p(l v p) t 4q(l w q)p(l ~ P)
"*21

§” 1:;2p2 + 2Q(1 " q)P2 + 2q2p(l - p) + 4q(l - q)p(l — p)m}.....I
s pq(2 M p)(2 _ q) {“1 ~ pq(2 a p)(2 u q)(”uni

From (75 a) the interaction variance is

F.2=,;~“'2a.' 2_ 2__ 2,, 2.J1 y 6g]. ng Gd]. Gdz 0

It turns out that

C3‘? = pq(2 — p)<2 — q) [:1 - p<2 — p) — (1 - p)2q(2 - q>j1 .
Note that when either p or 3 equals either zero or one, C; E = O. This is as it

should be since in those cases the genotype at one of the loci is constant for the

entire populations, i.e¢, there is no variation at the one locus to interact with

variation at the other,
. 2Table 5 lists values of if)?” y, Q3” :, <3 3, and (3* i for various values

2 are summed to give tetal additive genetic variance,
2 . . .are summed to give total variance due to dominance

f d . 2 »~— 2o :2 an 3 (T g1 and k) g

(«3 g’ and (‘3‘ C211 and 6’3

deviations, (3" 3°

Significant aspects of Table 5 are:
216 CT :3”. is but a small fraction of (3' § except when both p and q are smallo

29 (:7 g is small as a fraction of if except when both p and q are large,
53" KmKm3:: (5‘ g is the major component of x) except when both E and 3 are either large

or smalla
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Table 5. Components of genetic variance from action of two complimentary gene
pairs.

9
p .1 .3 .5 .7 .9

:1 o‘ g .0105 .0454 .0865 g .1221 .1430
of. .0006 .0037 .0068 .0083 .0082

6‘ E .0237 .0384 .0289 .0126 .0015

0' § .0348 .0875 .1222 . 1430 .1527

.3 0' g .1071 .1483 .1803 .2022

s“ g .0229 .0411 .0480 .0453

6‘ 3’: .0624 .0468 .0204 .0025

o" 121 .1924 . 2362 . 2487 .2500 ‘

.5 G g .1406 .1248 .1235

<3“ g .0703 .0766 .0658

of .0352 .0153 .0019

<5 5% .2461 .2167 .1912

.7 (3‘ g .0626 .0385

6 3 .0703 .0499

e" f .0068 .0009

0-32. .1424 .0893

39 <3 E “I. .0035

C? E .0159

o' g .0001

<3" :3 .0195

The student should note that the genetic model just considered is related to
the sort that Beadle(23) and his associates have found in control of physiological
processes in Neurospora. For example, the synthesis of arginine by Neurospora
dependson the presence of no less than seven genes. It appears that each step in
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a chain of chemical reactions is catalyzed by a specific gene and that if one of

these genes is absent the chain is blocked at the point of the reaction for which

the absent gene is catalysto Thus all seven (perhaps more) genes must be present

or orginine cannot be formedo The difference between the model considered above

and the situation in Neurospora lies in the fact that the cells of the vegetative

portion of the life cycle of this mold contain only the haploid chromosome
complement and hence dominance and reeessiveness of genes is not a factoro However,

a few instances are known of chemical reactions in humans under control of specific
genes and hence there is reason to believe that, fundamentally, classical
complementary gene action is an important genetic model. Consequently, it will
receive special attention in a later section devoted to the effect of selectiono
At that point systems involving more than two gene pairs will be consideredo

Qaaeia

Consider two pairs of genes to which the response of a character is completely
additive (no dominance, no interactions of non~allelic genes). However, assume that
the optimum for the character with respect to adaptability or selective value of the
organism is not an extreme value but rather an intermediate value. This model has
been considered by Wright (18). It is not difficult to visualize characters for
which the model may apply. Corn can be too tall or too short and it is quite
likely that the liver of a cow can be too large or too smallibr optimum balance
with the rest of the animal. It is not impossible that the genes controlling
height of corn and size of liver in cattle may act in an essentially additive
fashion on height and size, respectivelyrl/ However, because adaptability in these
i/The critical will point out that there is heterosis for height of corn and thattherefore gene action cannot be additiveo True; general vigor is reflected in 'height as well as in other traits. On the other hand, equally vigorous strains orlines (as measured by criteria other than height) may vary greatly in heighta Thuswe must admit genes which affect height independent of v'gor and these may exerttheir effects in an additive fashion. In harmony with this, there are tall inbredswhich when_crossed produce still taller Fl‘s, and short inbreds of which Fi’sexhibit heterosis for height but may be even shorter than certain inbreds. .
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cases is not a linear function of height or size their effects in terms of
adaptability would not be completely additiveo

As a specific example, assume that, measured in terms of adaptability

Yéz : Y = 0
r

Y21 = Y12 z Yio ” X01 z 3
Y = Y = Yll = 4

Note that the optimum genotype is one with two plus genes, regardless of the locus
at which they are present; and that genotypes with more or less plus genes are not
so favorable, the least favorable genotypes being those in which the number of plus
genes deviates by two from the optimum numbere

Y2. = 6p(1 ~ p) + 4(1 — p)2 = 4 ~ 2p " 2p2
Y1. = 392 t 8p{1 — p) + 3(1 - p)2 = 3 + 2p — 292
Y0. = 4102 + 61%}. - p) = 610 - 2102

From equation (71)

ul = (r2. ~ YO.)/2 = 2 ~ 4p = 2(1 n 2p)
alul = (23:10 n r20 — Yb.)/2 = 1

a1 = 1/2(1 — 2p)

Substituting in equations (69) and (70) and reducing

<5“ :1 = 2q(1 - q)(3 - 2q - 4p)2

<3 31 = 4q2(1 - q)2

0? N H 2g2 2p(l — p)(3 — 2p — Aq)

Cl d2 4132(1 — p)2

Computing CS” é directly for different values of p and q, and obtaining (3’ g by
subtraction of C? g and (5'5 from C3“ §, we obtain the values listed in
Table 6a
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The principle points to be noted from Table 6 at this time are:

(1) That it deviates in its composition from Table 5. The significance of this

is that the consequences of gene interactions vary from one system to another.

(2) That when 2 and g equal .5 additive genetic variance is zero though total

genetic variance is considerable. This situation is true at this particular

Table 6. Components of genetic variance from the action of two pairs of genes to
which the primary response of a character is strictly additive, the value
of the character in terms of total fitness of the organism being greatest
at an intermediate expression of the character.

q
p .1 .3 .5 .7 .9
:1 <5“ 31 2.08 2.14 1.40 .61 .23

6‘31 .06 .21 .28 .21 .06

6% .13 .30 .36 .30 .13

6‘ § 2.27 2.65 2.04 1.12 . .42

.3 Cs“ g 1.21 .39 .13 .61

GE .35 .42 .35 .21
(5‘31: .71 .84 .71 .30

c” f, 2.27 1.65 1.19 1.12

.5 6‘ g .00 .39 1.40
6‘ i .50 .42 .28

<3 § 1.00 .84 .36
cf; 1.50 1.65 2.04

.7 <5" g 1.21 2.14
o“ 3 .35 .21

<§‘§ .71 .30
0‘35»; 2.27 2.65

.9 0* g 2.08

0‘51 .06

of .13

(5‘3, 2.27
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‘ point relative to gene frequencies because the optimum number of plus genes

was assumed to be two which is one half the total number possible0 Had the

optimum number of plus genes been one or three, there would have been

additive genetic variance when p and g were one—half, but it would have been

absent at certain other combinations of the gene frequencies.

Problems:

160 Given YOO = 0, all other Y‘s equal laO. Determine 67 g, Ci'g, CS" $5 and
r 2C; y for

0.9 p=q=o5

b. p 2 q = 02

e. p = q = 08

d3 pao29q=08

e. p = 08, q = .2

17° Given Y22 = 4’ Y21 = YiZ 3 3’ Y2o = Yoe = Yll = 2’ YlO a Y01 = 19 Yen z 0°
Determine E? g,

q as in problem 16.

G? g, C? g, and 67 § for the some pairs of values of p and
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